

The Future of Consumer Technology

What Consumers Want from
Smartphones, Smart Home
Devices, Wearables, and AI Tools

Executive Summary

Consumer technology is on the cusp of profound change between 2025 and 2030. Across smartphones, smart home gadgets, wearables, and AI-driven tools, consumers are demanding more **intelligence, personalisation, and seamless integration** in their digital lives. This report examines key trends in each category and the evolving consumer expectations shaping them, with a global outlook (particularly the US and EU markets). It also provides data-driven market forecasts and strategic insights for businesses. **Common themes** emerge: consumers want greater **convenience** and functionality from tech, but *not at the expense of privacy, security or sustainability*. They expect their devices and services to work together effortlessly and to **adapt to their needs** in real time.

Key findings include:

- **Smartphones** will remain consumers' primary connected device, but innovation is bifurcating. Incremental improvements – such as **foldable displays**, better batteries, and on-device AI – are making phones more powerful and user-friendly. At the same time, radical concepts like **augmented reality (AR) glasses** and even brain-computer interfaces are on the horizon, potentially redefining what a “mobile phone” means by 2030. Consumers still prioritise core features (battery life, cameras, connectivity), yet also increasingly value attributes like **durability, privacy features, and eco-friendly design** in their phones.
- **Smart Home Devices** are seeing rapid adoption as consumers seek greater **comfort, security, and efficiency** in their homes. Voice-activated assistants, connected appliances, and home IoT systems are becoming mainstream. However, users insist that these devices be **easy to set up** and interoperable – spurring industry-wide standards for compatibility. **Privacy concerns** are high in this domain; brands that can guarantee data security and transparent use of personal data gain a trust advantage. Demand is rising for smart home solutions that not only automate tasks (like lighting and climate control) but also proactively **learn homeowners' preferences** to enhance convenience.
- **Wearables** (from smartwatches and fitness trackers to emerging AR/VR headsets) are evolving into indispensable wellness and productivity tools. Driven by advances in **health sensors and biomedical tech**, wearables are enabling continuous health monitoring (heart rate, sleep, activity and more) and even early detection of medical issues. Consumers are eager for wearable devices that are **smaller, more comfortable, and fashionable**, without sacrificing battery life or accuracy. By 2030, we expect new wearable form factors – including smart eyewear and even skin-mounted sensors – to gain traction, expanding the

definition of wearables. As with other categories, users expect wearables to integrate smoothly with their phones and other devices, forming part of a personalized ecosystem of tech.

- **AI Tools** (especially generative AI applications and smart assistants) have entered the consumer mainstream in the mid-2020s. A majority of consumers have now experimented with AI-powered tools for everyday tasks – from voice querying and content creation to personal organisation – and many report tangible benefits to productivity and creativity. Going forward, consumers want AI assistants that are **more conversational, reliable, and personalised**, acting almost like digital concierges. Integration of generative AI into smartphones, home devices, and wearables will blur the line between “device” and “service”. Crucially, users are starting to demand **responsible AI**: they expect AI tools to respect privacy (e.g. not hoarding personal data), to be transparent about how they work, and to provide safe, bias-free answers. AI providers that innovate with these principles in mind are likely to earn greater consumer loyalty.
- **Broader Consumer Tech (Laptops, PCs, etc.)** remains a cornerstone, especially for work and content creation, but growth here is modest compared to newer categories. Consumers continue to expect **faster, lighter, and more power-efficient** laptops, with features like all-day battery life, 5G connectivity, and AI-enhanced software becoming standard by 2030. Traditional PCs are increasingly complemented by cloud services and can be augmented by companion devices (like tablets or extended reality displays). While not as “buzzworthy” as wearables or smart home gadgets, personal computers will quietly incorporate many of the same trends – such as voice assistants, biometric security, sustainable materials, and interoperability within device ecosystems. The challenge for incumbents is to innovate in user experience (e.g. seamless syncing with mobile devices, or AI-driven user interface improvements) in a mature market where consumers often prioritise **stability and compatibility** over radical change.

Across all these domains, **consumer behaviour is shifting**: users are more tech-savvy and connected than ever, but also more discerning. They expect constant **connectivity and cross-platform experiences** – moving from phone to smartwatch to smart home seamlessly. They also voice growing concerns about issues like **data privacy**, device addiction, and electronic waste, pushing companies to act responsibly. The market outlook from 2025–2030 reflects these dynamics: we project strong growth in segments that deliver clear consumer benefits (e.g. health-focused wearables, or AI-enhanced services), and slower growth in segments that are saturating or commoditising. For example, the global smart home market and wearables market are set to expand at double-digit CAGRs, outpacing the smartphone and PC markets which are relatively mature.

Strategic implications: To thrive in this future, companies in the consumer tech sector should focus on **innovating with a user-centric mindset** and a long-term vision. Key strategic priorities include building **trustworthy technology** (prioritising privacy, security, and transparency), enhancing **interoperability** through standards and partnerships, leveraging **AI and data** to personalise offerings, and embracing **sustainable practices** in product design and lifecycle. Firms should also stay agile to anticipate emerging shifts – such as ambient computing and new interface paradigms – ensuring they are ready to meet the *next* generation of consumer needs. In sum, the next five years will be defined by tech companies' ability to deliver **smarter, greener, and more human-centric** devices and services that align with what consumers truly want.

Introduction

The consumer technology landscape is entering a pivotal period of innovation and consumer-driven change. The years 2025 through 2030 will witness an acceleration in how people use and relate to personal technology – from the phones in their pockets and the gadgets in their homes, to the intelligent software tools assisting them. This report provides a comprehensive overview of **the future of consumer tech**, examining what features, capabilities, and values consumers are increasingly prioritising in their devices and digital services. The analysis spans four major categories – **smartphones, smart home devices, wearables, and AI tools** – as well as other mainstream consumer electronics (like laptops and personal computers). By focusing on *what consumers want* and expect, we can identify the key trends that will shape product development and market opportunities in the second half of the decade.

Several **contextual factors** frame this period. First, technology itself is advancing rapidly: **artificial intelligence (AI)**, including generative AI, is enabling more natural and powerful user experiences; **connectivity** is improving with 5G becoming ubiquitous and 6G on the horizon; and component technologies like sensors, processors, and batteries continue to get better. Second, consumers' lives and needs are evolving: the COVID-19 pandemic left lasting impacts on how people work, learn, and live at home, spurring interest in home technology and health monitoring. Meanwhile, younger generations (Gen Z and beyond) are coming of age as tech consumers with their own preferences (often mobile-first, socially conscious, and demanding of convenience). Third, broader societal concerns – notably **privacy, security, and sustainability** – are increasingly entwined with tech usage. Regulators in the EU, US, and elsewhere are enforcing stricter data protection and pushing for greener practices, reflecting public sentiment. All these factors mean companies must innovate in ways that are not just technologically feasible, but also *aligned with consumer values* and global trends.

From a **geographical perspective**, this report takes a global view but pays special attention to the **United States and European Union** markets, as they often set trends in consumer expectations and regulatory standards. However, it also acknowledges that some of the fastest growth in adoption is happening in regions like the Asia-Pacific, and that consumer tech is a worldwide phenomenon with cross-pollination of ideas (for instance, a popular feature in one country can quickly create demand elsewhere).

The structure of the report is as follows: **Key Trends by Category** dives into each major product category (smartphones, smart home, wearables, AI tools, and other consumer tech), describing current consumer-driven trends and the future outlook toward 2030. Next, **Consumer Behaviour Insights** synthesises how consumers are interacting with technology across these domains – their purchase drivers, usage patterns, and concerns. The **Market Forecasts** section presents high-level projections for market growth and adoption rates in each category, providing a data-driven sense

of scale and timing. Finally, **Strategic Implications** discusses what these trends mean for companies in the consumer tech industry, highlighting practical steps and considerations for business leaders and product strategists.

Overall, the aim is to provide a **clear, actionable understanding** of where consumer tech is headed and what consumers will be looking for. Whether one is a device manufacturer, a software provider, or an investor in the tech sector, anticipating consumer needs is crucial for success. By looking out to 2030, we can envision the products, services, and experiences that will define the next era of consumer technology – and begin preparing for them today.

1. Key Trends by Category

Smartphones

Smartphones have become an indispensable extension of the consumer's self – a single device that handles communication, entertainment, information, and more. As we approach 2030, the smartphone will retain its central role, but *how* it fulfills that role is evolving in response to consumer demands. **What do consumers want from their smartphones in the coming years?** In summary: **more power and utility, more personalisation, more integration – and at the same time, less hassle, less fragility, and less worry about privacy or battery life.**

Incremental innovation versus radical transformation: On one path, smartphones are undergoing steady, user-focused improvements. Consumers still want familiar fundamentals **enhanced** – for instance, larger and sharper displays that remain comfortably portable, or faster processors that don't drain the battery. This has driven the rise of **foldable and flexible displays**, which allow a small phone to open into a tablet-like screen. By 2025, major manufacturers have foldable models on the market; by 2030, these could become a mainstream option as materials improve and prices fall. Flexible **OLED** screens and even **rollable** displays promise to maximize screen real estate while keeping devices pocketable. Alongside this, materials science advances are yielding **tougher glass and casings** (to make phones more drop-resistant) and **longer-lasting batteries**. Consumers absolutely prioritise battery life – a survey of smartphone buyers consistently finds battery performance near the top of the wish list – so companies are exploring technologies like high-capacity solid-state batteries and faster wireless charging to deliver multi-day use. In short, the near-term trend is smartphones that are **sleeker, more durable, and more efficient**, addressing everyday pain points.

The more radical trajectory for smartphones is their potential convergence or replacement by new technologies. Tech visionaries have predicted that by the late 2020s, the very concept of a “phone” may broaden. **Augmented reality glasses** are a prime candidate to succeed smartphones in some functions: imagine using lightweight AR eyewear to see navigation directions, messages, or virtual call participants in your field of view, rather than looking down at a handset. Tech leaders at companies like Meta and Apple have hinted that AR/VR will eventually become the primary interface to digital content. Indeed, the CEO of Nokia went so far as to suggest that by the time **6G networks** are prevalent (around 2030), we might not *recognise* smartphones as we do today – implying the form factor could drastically change or even be subsumed into our environment or bodies. While the reality by 2030 will likely still see billions of traditional smartphones in use, we expect at least a **partial shift toward wearables** handling many tasks currently done on phones. High-end consumers might use AR glasses for immersive experiences or an AI-driven smart

earpiece for always-on assistance, with the smartphone serving as a powerful hub and processor in the pocket.

Artificial intelligence integration: AI is set to be one of the defining features of the next-generation smartphone experience. Today's phones already use AI for things like camera scene detection or voice assistants, but consumers are asking for *truly smart* smartphones that proactively make life easier. By 2025, we have seen the first wave of **AI-enabled phones** – devices with dedicated neural processors that can run advanced machine learning models on-device. Looking ahead, smartphones are expected to act as **personal AI concierges**. This might include an AI that learns a user's habits and preferences – effectively a digital personal assistant who can auto-suggest replies, remind you of meetings, filter notifications by importance, and even perform complex tasks like drafting emails or making reservations via voice command. Importantly, much of this AI work may happen **locally on the phone ("on the edge") rather than in the cloud**, for both latency and privacy reasons. Consumers have grown wary of sending all their data to big tech servers, so brands are touting AI features that keep sensitive data (like your face ID, message content, or routine patterns) securely on the device. An example trend is **personalised AI routines**: if you always switch to a certain app on your commute or enter a "do not disturb" mode during lunchtime workouts, your phone's AI could learn and automate those patterns. Beyond convenience, AI will also bolster **security** (e.g. smarter fraud call detection, continuous authentication by voice or gait analysis) and **accessibility** (real-time transcription, translation, or even image descriptions for the visually impaired).

Connectivity leaps (5G to 6G): Network capability shapes what consumers can do with smartphones. As of 2025, 5G networks are widespread in developed markets, and consumers are enjoying faster downloads and new services like high-resolution streaming and cloud gaming on mobile. By 2030, the focus will shift to **6G** – the next generation network expected to roll out towards the end of the decade. While 6G standards are still in development, the promise is **ultra-high speeds and near-instantaneous latency**, on the order of 100 times faster than 5G. For the average consumer, this could enable real-time immersive experiences (such as AR with live holographic calls, or mobile VR without the tether of Wi-Fi) and even more reliable connectivity in crowded areas or remote regions. 6G might also underpin advanced applications like interconnected smart cities, autonomous vehicle networks, and remote medical operations – some of which indirectly enhance the consumer smartphone experience. An interesting implication of 6G's low latency is the potential for **cloud-offloading**: instead of needing all heavy computing power on the phone, complex tasks (like rendering 3D graphics or running massive AI models) could be done on edge servers in real time, with the phone simply streaming results. This might allow future smartphones to be lighter and more power-efficient. However, consumers likely won't feel the impact of 6G until closer to 2030, and even then, it will initially be a premium feature. In the interim, the expansion of **5G coverage** and **improvements in Wi-Fi (Wi-Fi 7)** will ensure that consumers stay always-connected. We should also mention the push for **satellite connectivity** in

phones – already, brands have introduced emergency satellite SMS features for when you’re off the grid. By late 2020s, basic satellite communication in smartphones may be more common, aligning with consumer desires for safety and connectivity anywhere on the planet.

Augmented reality and new user interfaces: Many consumers express interest in AR features on phones – for example, using the phone’s camera to overlay information on the real world (think: pointing your phone at a sign and seeing an instant translation, or visualising how a piece of furniture would look in your room through the screen). The popularity of mobile AR apps and filters (from Pokémon Go to Snapchat) indicates this is a fertile area. Smartphone makers are investing in better AR capabilities: expect more advanced depth sensors (like LiDAR scanners which some phones already have) to improve AR realism and responsive haptic feedback to make virtual interactions more tangible. By 2030, using your phone for AR navigation (with floating arrows on the live street view) or collaborative AR gaming/creative tasks may be routine. Additionally, **voice and gesture control** will complement touch as input methods. Consumers generally find voice assistants convenient, and as natural language understanding gets better (thanks to AI), talking to your phone might become as common as typing – especially for controlling smart home devices or searching on the go (“Hey phone, find Italian restaurants nearby and book a table for two”). Gesture control, using the phone’s camera to detect hand movements or even neural signals (some tech can pick up subtle finger movements via wrist sensors), could also offer touchless ways to interact, which is useful when hands are occupied or for accessibility.

Privacy and security features: With smartphones holding so much personal data and even biometrics, consumers are very concerned about privacy. High-profile scandals and cyber-attacks in the 2020s have heightened awareness; by 2025 a majority of consumers say they consider a brand’s privacy reputation before buying a device or installing an app. Smartphone trends to address this include **more transparent privacy controls** (simplified settings to manage app permissions, location tracking, etc.) and **on-device encryption** becoming standard for all personal data. Hardware security elements like secure enclaves, which started in premium devices to store fingerprint or face data safely, are now common even in mid-range phones. Looking towards 2030, we anticipate **increased regulatory requirements** too – for example, the EU’s GDPR and similar laws might enforce that phones ship with privacy-protective defaults. Consumers might also get “**privacy dashboards**” that clearly show what sensors or data are being used by which app in real time (some systems do this already with indicators for camera/microphone use). Another innovation is **AI-driven privacy protection**: imagine your phone automatically blocking a suspicious app from accessing your contacts, or detecting and alerting you if malware is present. Tech companies are even exploring “**privacy guardian**” AI – a kind of smart firewall on your phone that learns your usage patterns and can warn or intervene if something out of the ordinary happens that could compromise privacy. Surveys indicate many users would welcome such intelligent assistance to manage their digital footprint. In essence, by 2030, a valued

smartphone feature may be how effectively it **protects the user's information by default**, without needing much technical expertise from the user.

Sustainability and longevity: Consumers and regulators alike are pushing for more **environmentally sustainable** tech products, and smartphones are no exception. In Europe especially, laws are being introduced to address e-waste and force manufacturers to support devices longer. Consumers are increasingly judging their gadgets not just on specs, but on factors like **use of recycled materials, energy efficiency, and repairability**. The "Right to Repair" movement has gained momentum – by 2025, we see phone makers providing more affordable battery replacements and even modular designs (a few niche models allow swapping components). By 2030, mainstream smartphones are expected to use **far more recycled and bio-based materials** in their casings and components, and packaging will be minimal and plastic-free. There is also work on **self-healing materials** for phones – for instance, special polymers that can seal minor scratches on a screen automatically, which could extend device aesthetics without needing replacement. Moreover, the average **lifespan of smartphones is lengthening**. A decade ago, many consumers replaced phones every 2 years; now it's common to keep a phone 3-4 years if it remains functional. This is partly due to devices being "good enough" for longer, and partly cost considerations, but also an environmental mindset: people want products that last. As a result, software support timelines are expanding – a consumer buying a phone in 2025 might expect OS updates and security patches up to 2030 or beyond, and manufacturers who deliver that will earn trust. In summary, **sustainability is a core trend**: the phone of the future isn't just smarter, it's also greener in its lifecycle. This aligns with consumers' broader expectations that tech companies take responsibility for their environmental impact.

In conclusion, the smartphone of 2030 will still be a versatile personal device, but with **capabilities that sound like science fiction today** – AI so advanced it feels like a personal aide, connectivity so fast and ubiquitous that information and services are virtually instant, and possibly new ways to experience digital content (through AR or other interfaces). Yet, consumers will measure these innovations against very human criteria: does it make my life easier or more enjoyable? Can I trust it with my data and safety? Is it worth the cost and does it reflect my values (like sustainability)? The industry trends all point to making the answer to those questions yes. Smartphones will not disappear; rather, they will adapt and perhaps share the stage with new devices, all to continue serving as the **nerve centre of modern digital life**.

Smart Home Devices

The concept of the "smart home" – once a futurist dream – has firmly entered the mainstream by the mid-2020s. A **smart home device** can be anything from a voice-controlled speaker or a smart light bulb, to an intelligent refrigerator or a home security camera system. Consumers are increasingly adopting these devices in search of greater **convenience, security, and comfort** at

home. Between 2025 and 2030, the smart home ecosystem is expected to grow dramatically, and consumers' expectations are rising in tandem. In this section, we examine what consumers want from smart home technology and how the industry is responding.

Convenience and comfort as primary drivers: One of the strongest appeals of smart home devices is the *promise of convenience*. After all, who wouldn't want a home that can **take care of tasks automatically** – like lights that turn on when you enter a room, a thermostat that self-adjusts to keep you comfortable while saving energy, or a coffee maker that has your brew ready when you wake up? The COVID-19 lockdowns, which forced people to spend much more time at home, actually boosted appreciation for such conveniences. Surveys in the early 2020s showed a large share of consumers prioritising home improvements that enhance comfort and ease of living. For example, about *three in five American consumers* in a 2023 study said that making their home more comfortable was a top priority for them, and an even greater proportion (around 80%) of British consumers agreed that "the home is central to their wellbeing." These sentiments translate directly into willingness to invest in smart home solutions that add comfort – whether that's **smart lighting ambiances, automated cleaning devices** (robot vacuum sales have soared), or **intelligent HVAC systems** that ensure the home is always at the right temperature without manual adjustment.

Security and safety: While convenience is the collective attraction, a very concrete and leading motivation for many buyers is **home security**. Traditional alarm systems have given way to smart cameras, video doorbells, connected locks, and motion sensors that not only deter intruders but also allow homeowners to keep an eye on their property from anywhere via their smartphone. In the US, security consistently ranks as the number one reason people purchase smart home devices. Over half of US consumers cite improved security – for instance, receiving an alert and video feed if someone's at the door – as a main interest in smart home tech. The appeal of being able to protect one's home and family using technology is universal: a young parent might install a smart baby monitor that sends notifications of the baby's movements, while an elderly person might feel safer with fall detectors and emergency call features in the home. **Safety monitoring** extends beyond intruders; it includes smart smoke/CO₂ detectors that can send phone alerts, water leak sensors to catch plumbing issues early, and even air quality sensors which have become more popular after events like wildfires. All these contribute to peace of mind. For many first-time smart home adopters, a video doorbell or camera is the gateway device, after which they expand into other categories.

Entertainment and lifestyle: Another segment of smart home adoption is driven by pure enjoyment and lifestyle enhancement. Smart TVs and connected speakers, for example, form the core of modern home entertainment. Consumers increasingly enjoy the ability to stream content effortlessly and control it with voice commands (e.g. "play my chill playlist in the living room and kitchen"). Smart lighting that syncs with music or movies to create immersive ambience is a hit

among enthusiasts. In some markets, entertainment is even more of a draw than utility – for instance, Canadian consumers have trended towards *smart entertainment devices* (like streaming dongles, smart speakers, etc.) as a primary interest, more so than appliances or security, reflecting a desire for interconnected fun at home. Additionally, lifestyle products like **smart kitchen appliances** (wi-fi enabled ovens, smart coffee machines) attract those who love tech novelty and the idea of a “*Jetsons*”-like home.

Varied demographic appeal: Initially, the typical smart home tech adopter was often seen as tech-savvy younger males with higher income (since the first devices were pricey and somewhat complicated). While that group still is important, the demographic profile is broadening as devices become cheaper and easier to use. We are seeing more families and even older adults getting on board. One analysis of purchasing decisions found that in American households, *mums (mothers)* value smart home tech for **security and comfort** (e.g. cameras, smart thermostats to keep kids comfy) whereas dads might be more attracted to **gadgets and latest tech** for its own sake. Children and teens also indirectly drive adoption – kids quickly learn how to use voice assistants and often encourage parents to get new devices (for entertainment or because they saw something cool on social media). Notably, over two-thirds of dads in the UK said they’d tried a new tech product that their child recommended, an indicator of how influential the digitally native generation can be on household tech choices. This means marketing smart home features for **family convenience and fun** is as crucial as touting advanced specs.

It’s also interesting that in tech-hungry markets like China, consumers show a high eagerness to be early adopters of smart home innovations – surveys found more than 70% of Chinese consumers would like to be among the first to try new smart home tech, indicating a huge appetite for novelty and modernisation, which will likely drive rapid adoption of cutting-edge home devices in those regions.

Barriers: complexity, interoperability, and cost: Despite the interest, several pain points have hindered even faster adoption, and these directly align with what consumers *want improved*. Firstly, **ease of use** is paramount. A smart device isn’t very “smart” in consumers’ eyes if it’s a headache to install or if it doesn’t work reliably. Early adopters often struggled with devices that wouldn’t connect properly, apps that were confusing, or gadgets that didn’t play nicely with others. Even by the 2020s, a significant share of users voice frustration: in the UK, about 40% of consumers who use smart home tech reported frustration in getting devices to *work together* smoothly. This highlights the notorious interoperability problem – different brands using different standards, forcing users to juggle multiple apps or hubs. For older or less tech-savvy people, this complexity can be a deal-breaker. The industry has heard this loud and clear, and a major trend has been the development of **common standards**. The most notable is **Matter**, an open-source interoperability protocol backed by just about all the big players (Apple, Google, Amazon, Samsung, and many others). Matter-enabled devices can communicate across brands and

ecosystems more seamlessly, simplifying setup and combined use. As Matter rolls out (it launched in 2022 and devices started coming in 2023-24), consumers are expected to face far fewer compatibility issues. In fact, interest surveys show many consumers would be willing to mix and match brands if they knew the devices would work together – for example, over 60% of Canadian consumers said they'd explore more options if interoperability were assured. By 2030, we anticipate “**plug and play**” experience will be the norm: a new smart home gadget will easily join an existing network with minimal effort, often auto-detected by a home’s central hub or voice assistant.

The second big barrier is **data privacy and security concerns**. With devices potentially listening and watching in the home, many people are understandably cautious. Roughly two-thirds of Canadians, for instance, expressed concern about data hacking or misuse related to smart home devices, and a quarter of Americans said they don’t trust that their data would be safe if they got smart home products. Stories in the media about hacked cameras or spooky anecdotes of voice assistants “listening” have given consumers pause. As a result, there’s a clear consumer demand that smart home brands must **prove themselves trustworthy**. This means using robust encryption, giving users control over data (like the option to not share recordings on the cloud), and being transparent about what data is collected. Some companies now advertise privacy as a feature – for example, emphasizing that a security camera has local storage and doesn’t send footage to any company server. We expect **privacy assurances and certifications** to become a selling point by 2030, possibly with independent audits or labels (akin to how organic food has certifications) so consumers know which devices meet high privacy standards.

Finally, **cost** remains a practical barrier. While prices of many smart devices have come down (a basic smart speaker or plug can be under \$30 now), outfitting an entire home with smart tech can still be expensive. And in economically tough times, consumers may hold off on non-essential upgrades. In the US, when surveyed on why they haven’t bought into smart home devices, the number one reason given is often “too expensive.” Similarly, in other countries like Japan, over half of consumers have cited the high cost as a major deterrent to purchase. This is pushing brands to offer more value-oriented lines or starter kits, as well as highlighting energy savings (e.g. a smart thermostat can pay for itself by reducing energy bills) to justify the upfront expense. Additionally, as the tech matures and competition grows, we anticipate continued price declines. By the late 2020s, many smart home functionalities will likely be built into standard home devices with little premium – for instance, almost every new TV sold is “smart” by default now, and we could see the same with appliances (your next washing machine or microwave might all come Wi-Fi enabled with an app, at only a marginal cost increase).

Interoperability and ecosystem formation: We’ve touched on Matter as a critical trend for interoperability. It’s worth noting how significant this is: with giants like Apple, Google, Amazon, and Samsung on board, the goal is that a consumer should be able to buy a light bulb from Brand

X, a thermostat from Brand Y, and a speaker from Brand Z, and have them *all speak the same language*. This goes beyond just voice control; it means the devices can be part of unified routines. For example, a morning routine could have your smart blinds open, your smart speaker start the news, and your smart coffee machine start brewing – even if those are three different brands – because they all follow the common protocol and share states/commands securely. In 2025, there are already about 170 companies in the Matter alliance, and the number is growing. By 2030, it's likely that any reputable smart home device will simply be expected to be Matter-compliant (or whatever evolves from it), much like any gadget now is expected to have Wi-Fi or Bluetooth. This will **eliminate a lot of consumer confusion** and reduce the lock-in effect where one felt pressured to stick to one brand's ecosystem. Companies will compete on the quality and intelligence of their devices and services rather than the proprietary nature of their network. For consumers, that means **freedom of choice and easier expansion** of their smart home setups.

AI and the “intelligent home”: The introduction of AI into smart homes is a game changer. Up until recently, most smart home devices did what they were told – you set a schedule or give a command. The future is devices that **anticipate needs and adapt**. We're already seeing early signs: thermostats that learn your schedule and preferences within a week and then start programming themselves; refrigerators that can detect when you're low on certain groceries; or voice assistants that can string together complex tasks (“When I say ‘goodnight’, lock the doors, turn off the lights, set alarm to 7 AM, and lower the thermostat to 18°C.”). Consumers are increasingly expecting such capabilities as AI becomes more common. In a survey, about a quarter of US consumers said they are looking for smart home devices with AI that learns their preferences and self-activates – essentially taking the burden off the user to constantly manage the devices. Tech companies are investing heavily here: Amazon, Google, and Apple, the makers of Alexa, Google Assistant, and Siri respectively, are all working on next-generation AI upgrades for their assistants. By leveraging **generative AI**, the aim is to make interactions far more natural and even proactive. We can anticipate, for example, telling a future Alexa/Google to “take care of the house while I'm on holiday” and the assistant figuring out to run lights in a pattern to simulate occupancy, alert a neighbour if something's off, water plants via connected irrigators, etc., without explicit step-by-step programming.

Another intriguing development is efforts to give smart assistants **emotional intelligence** – making them sound more human-like and empathetic. This might seem fanciful, but the idea is that a truly helpful assistant can understand not just commands but context and tone. If a user sounds distressed shouting at their smart speaker, maybe it can respond in a calming manner or offer help. Some prototypes and demos have shown assistants that can change their tone or even express a bit of sympathy, to make interactions feel more “alive.” While widespread implementation of that might be years out, it underlines the direction of travel: **ambient intelligence** in the home that operates in the background, largely unseen, adjusting things to suit the user's well-being.

For certain populations like **the elderly or disabled**, AI-driven smart homes could be revolutionary. Imagine an ageing individual living alone: a smart home could remind them to take medication, detect if they haven't gotten out of bed at their usual time and send an alert to a caregiver, prevent accidents by automatically turning off an oven left on, or call emergency services if a fall is detected. Many of these capabilities exist in rudimentary form now (like fall-detecting wearables or stove sensors), but by 2030 we expect more integrated solutions. This demographic aspect is noteworthy: as global populations age, the demand for tech solutions that allow **independent living** longer will grow. Smart home features that once might have been marketed as luxury or novelty could be repackaged as essential health and safety tools.

Energy efficiency and sustainability in the smart home: Another trend aligning with consumer values is the push for smart homes to contribute to sustainability. With energy costs rising in some places and concerns about climate change, people are keen on using technology to reduce consumption. Smart thermostats and smart plugs, for example, help avoid wasteful heating/cooling and standby power drain, respectively. By 2030, many homes might be equipped with **smart energy management systems** that coordinate solar panels, battery storage, EV chargers, and appliances to optimise energy use and cost. For instance, your water heater might automatically run when your rooftop solar output is high in the afternoon, or your refrigerator could briefly power down during the evening peak grid hours to save money, all without affecting the user experience. Consumers might not manually configure such things, but an AI energy manager could learn usage patterns and handle it. Importantly, this can translate to cost savings – a key motivator, as highlighted earlier, especially in Europe where energy crises have made consumers very conscious of their usage. Brands that can clearly quantify and communicate the **cost-saving and eco-friendly benefits** (e.g. “our smart heating system can cut your energy bills by 20%”) will attract environmentally and economically minded consumers alike.

Overall outlook: By 2030, the average tech-aware household in the US or Europe may have dozens of connected devices, many of which fade into the background of daily life. The notion of an “ambient home OS” has been floated by some – meaning the home itself, rather than any single device, is the computer running things. Consumers might simply set high-level preferences (“I like my home bright and cool in the morning, secure but welcoming to friends, and energy-thrifty when I’m away”) and the network of devices figures out the rest. The technology to do this is largely here or in development; the key is integrating it in a user-friendly way.

However, it's worth noting that consumers will still range from enthusiasts to skeptics. There will always be a segment that loves tinkering and customising their smart home scenes down to the detail, while another segment wants plug-and-play simplicity with minimal setup. The industry must cater to both – offering advanced customisation for power users *and* straightforward default modes for casual users. Additionally, trust and reliability remain the bedrock: one bad experience (like a security breach or a system failure at a critical time) can sour someone's view of smart

devices. Therefore, as much as innovation is key, **product quality, customer support, and robust security** will be equally important trends, even if they're not as flashy as AI or holographic displays. A truly consumer-centric smart home future is one where the technology *just works*, fits seamlessly into everyday routines, and enhances quality of life in ways big and small – all while keeping the household's data safe and usage simple. That is what consumers are increasingly expecting, and companies that deliver on that vision will lead the market.

Wearables

Wearable technology has come a long way from simple pedometers and novelty tech. As of the mid-2020s, **wearables** – devices worn on the body that have smart functionalities – encompass a broad array of products. The most familiar are **smartwatches and fitness bands** on our wrists, but wearables also include things like smart rings, health-monitoring patches, AR/VR headsets (worn on the eyes or head), and even smart clothing. Consumers have embraced wearables primarily for health and convenience reasons, and those motivations will deepen by 2030. In this section, we explore the key trends in wearables and what consumers are looking for in this category.

Health and wellness at the core: If one trend defines wearables, it is their transformation into personal health companions. Consumers increasingly view gadgets like smartwatches less as mini-phones and more as **wellness monitors** that can track and encourage healthy behaviour. Current devices already measure steps, heart rate, sleep patterns, and activity intensity. By 2025, many mainstream wearables also include features like blood oxygen saturation (SpO2) readings, stress level indicators (via heart rate variability), and ECG capabilities to detect irregular heart rhythms. The next frontier, which companies are actively researching and in some cases have prototyped, includes **blood pressure monitoring from the wrist** and **non-invasive glucose monitoring** for blood sugar – a holy grail for helping diabetics and health-conscious individuals alike. Consumers express strong interest in such features; a device that could continuously monitor glucose without a needle, for example, would be groundbreaking for millions managing diabetes and could even help in general fitness/diet management.

By 2030, we expect many wearables to have a suite of medical-grade sensors. In fact, the line between consumer wearable and medical device is blurring. Regulators like the FDA in the US have started approving certain smartwatch functions as medical diagnostics (for instance, the Apple Watch's ECG feature is cleared to detect atrial fibrillation). We anticipate more of these approvals, meaning your wearable might be an accepted part of routine healthcare. For consumers, this is a huge plus: they want wearables that not only *collect* data but provide meaningful **health insights and alerts**. Already, there are stories of wearables alerting users to conditions like atrial fibrillation or even potential COVID-19 infection (through abnormal heart rate and temperature patterns) before symptoms manifest. In the future, wearables could alert a wearer and their doctor

about a possible developing hypertension issue, or detect early signs of sleep apnea, etc., prompting timely medical consultation.

Moreover, **fitness and coaching** functionalities are growing more advanced. It's not just about counting steps; consumers want actionable guidance. Wearables are starting to offer personalised workout suggestions, form analysis (some smartwatches use motion sensors to detect if your running gait or swimming strokes are efficient), and recovery metrics telling you how long to rest after intense exercise. By leveraging AI, wearables can become quasi "personal trainers" on your wrist. For example, if your wearable notices you haven't moved much by mid-day, it might suggest a quick walk and even map a short route for you, aligning with your fitness goals. If it sees you didn't sleep enough last night, it may advise a lighter workout today. This level of personalisation is something users are coming to expect – essentially, *don't just give me data, help me use it to live better*. Companies like Garmin, Fitbit (Google), and Apple are all pushing into this personalised coaching territory, often as part of premium services tied to their devices.

Expanding form factors: While the wrist-based wearable (smartwatch/fitness band) dominates today – accounting for well over half of wearable sales – the next years will diversify what a "wearable" can be. **Ear-worn devices ("hearables")** like wireless earbuds are extremely popular and are themselves getting smarter (some earbuds now have fitness tracking for runs via accelerometers, or can monitor your posture by how you tilt your head!). They also present an avenue for health sensing – for example, the ear is a good place to measure core body temperature and even pulse, so future earbuds might double as health trackers while you listen to music.

Then there are **AR (augmented reality) glasses and VR (virtual reality) headsets**, which although often discussed separately from wearables, indeed are devices you wear. The late 2020s should see a significant push in this area. Companies are investing in making AR glasses that look and feel like normal spectacles, but can overlay digital information on the real world (directions, notifications, translations, etc.). Consumers have shown interest in AR – think of how many people tried Pokémon Go or use AR filters. The idea of getting information without having to pull out a phone is appealing for convenience. By 2030, we might see early models of stylish AR glasses aimed at everyday users (as opposed to the bulky enterprise or gamer-oriented headsets). If these devices can address privacy (nobody wants to be secretly recorded by someone's glasses) and design concerns, they could become the next must-have wearable. Imagine walking around a city and your glasses show you reviews of the cafe you're looking at, or highlight your train's departure gate as you enter a station – these kinds of use cases could drive adoption. For now, AR glasses might be considered an extension of the smartphone (tethered to its connectivity and processing), but eventually they could operate largely independently.

Comfort, fashion, and invisibility: A critical factor for any wearable is that it has to be *wearable* – i.e. comfortable, stylish (or at least not ugly), and ideally unobtrusive. Consumers

do not want to feel like they're carrying a brick on their wrist or walking around with something that marks them out as a nerd. Early wearables sometimes failed on style, but the industry has learned. Now there are smartwatches with luxury analogue watch aesthetics, fitness bands that come in multiple colours and can be swapped like fashion accessories, and collaborations with fashion brands. This will continue, with more co-design between tech firms and fashion designers to make wearables that people actually want to be seen in. Also, a concept gaining traction is "**invisible wearables**" – technology embedded in everyday objects or clothing. For instance, there are prototypes of smart rings that track activity, smart clothing with sensors in the fabric (like shirts that can measure heart rate or posture), and even electronic tattoos (ultrathin stick-on circuits) that can monitor vital signs discreetly for a few days at a time. By 2030, while watches and earbuds will still be popular, we might also see more people wearing *smart patches* on their skin for continuous health tracking during workouts or sleep, or using devices like smart contact lenses (being researched for glucose monitoring through tears, or basic AR HUDs).

The advantage of these new form factors is that they can be even more seamless and specifically purposed. A smart patch might be a single-use wearable you put on when you want detailed bio-data during a marathon or so. Smart glasses can give heads-up info in a way a watch cannot. Smart clothing could provide a larger "surface" of sensors for things like muscle activity monitoring or could even provide haptic feedback (imagine a jacket that could give you a tap on one shoulder to indicate direction from GPS!). For consumers, having choices means they can pick wearables that fit their lifestyle best. Not everyone likes something on their wrist, so maybe they prefer a ring or pendant. The more the tech integrates into diverse wearables, the more user segments can be reached.

Interconnectivity and ecosystems: Just like in the smart home, consumers want their wearables to work well with other devices. Typically, a wearable is paired to a smartphone – indeed many smartwatches are still partially dependent on phones for full functionality. But as we move forward, wearables may have more standalone capability (many watches already have their own cellular connections). Consumers want the freedom to, say, go for a run with just their smartwatch and earbuds – leaving the phone at home – but still be able to stream music, receive an emergency call/text, pay for a drink on the way (with NFC payments), and have their run mapped via GPS. The good news is all of that is already possible with high-end watches today. By 2030, it will likely be standard across even mid-range wearables.

However, the **ecosystem lock-in** is still a consideration. If you have an Apple Watch, you need an iPhone to use it, for example. Some wearables have tried to be cross-platform, but with varying success. Consumers generally prefer not to be locked into a single brand's walled garden; however, they also highly value a *smooth experience*. Companies like Apple bank on the latter – if all your devices are Apple, they work very harmoniously together. We expect ecosystems to remain strong: e.g., Samsung phone users might gravitate to Samsung watches for the integrated apps, etc. But

also, standards and compatibility are improving (for instance, generic Bluetooth standards for health data, meaning a third-party health app can aggregate data from different branded devices). Users want their health data to travel with them – if they switch phone brands or use multiple types of wearables, they'd like all the data in one place. So, the trend is towards better **data interoperability** through cloud accounts or standards like the upcoming **Health Connect** by Android/Google that tries to unify fitness/health data sharing between apps and devices. Companies that position themselves as platform-agnostic (like some fitness apps that work with any wearable) could appeal to users who mix devices.

Personalisation and context awareness: We touched on personal coaching; more broadly, wearables will get better at understanding *context*. For example, a wearable could detect not just raw data, but situational context – “User is running versus user is in a business meeting” – and adapt accordingly (perhaps silencing non-urgent notifications during the latter, or automatically enabling a workout mode during the former). They might also learn individual baselines: knowing what’s a normal heart rate or sleep pattern for you and alerting when something is off relative to your norm, rather than generic thresholds. This personal baseline approach is big in health research because each person’s metrics can vary widely. Consumers effectively want devices that *know them*.

Another aspect is **mental health and wellbeing**. Future wearables may not just track physical metrics but also try to gauge mental state – some apps already infer stress from heart rate variability and prompt you to do a breathing exercise if you’re very stressed. There’s research into using wearables to detect early signs of depression or anxiety by patterns of sleep, activity, and even tone of voice. By 2030, while it might not be fully mainstream, some wearables could serve as mental wellness tools, nudging you to take breaks or connect with others if your patterns suggest isolation, etc. The ethical considerations are important here, but many consumers, especially younger ones, are open to using tech for mental health support as long as privacy is respected and it’s done sensitively.

Battery life and hardware improvements: One persistent request from users is better battery life on wearables. No one likes charging their watch daily or their AR glasses every few hours. Significant work is being done on low-power chips for wearables, solar charging watch faces, or even energy harvesting (like using body heat or movement to charge the device). By 2030, incremental improvements plus perhaps new battery tech (solid-state batteries, etc.) could allow mainstream smartwatches to go a week on a charge instead of a day or two. Some current fitness bands already last a week or more by using simpler e-ink displays or fewer features, but the goal is to have feature-rich devices with longer endurance. This is crucial if wearables are doing health monitoring 24/7 – they need to be on your body, not on a charger. Consumers will gravitate to devices that minimise downtime and fuss.

Fashion and luxury segments: Beyond utility, wearables are also fashion statements. We see luxury smartwatch editions, designer bands, collaborations (like a smartwatch with a famous fashion house's strap design). There's also a market for **traditional-looking watches that have hidden smart features** (hybrid watches that look analog but track steps and vibrate alerts). These cater to consumers who want tech benefits but prefer a classic style. By 2030, the distinction between a "tech gadget" and "jewellery/clothing" might blur – you might buy a jacket because you like its style and only later realise it has smart heating or tracking features built in. This invisibility and blending is likely what will drive mass adoption beyond the tech enthusiasts: when wearables don't look like gadgets at all.

Emerging and niche wearable categories: A few interesting ones to note – **smart eyewear** (beyond AR glasses, even simple ones like audio glasses that play music through bone conduction), **smart helmets** (for cyclists or construction workers, with built-in lights, communication, crash detection), **smart gloves** (for VR or for gesture control), and **exoskeletons** or posture wearables (wearable devices to support or correct body posture, which could be consumerised for back pain relief or for assisting lifting heavy objects). While these may serve narrower audiences, they show the versatility of wearables. By focusing on specific consumer needs (safety for bikers, better ergonomics for workers, etc.), wearables can find a place in various aspects of life.

Privacy and data concerns in wearables: As with other tech, wearables raise privacy issues – they gather very intimate data (heart rate, location, etc.). Consumers generally accept this if the data helps them and is kept safe. There is an expectation of **data security and anonymity** – e.g., if sharing health data to a cloud service, that it won't be misused by insurance companies without consent or sold for marketing. Transparency is important; platforms now often give users control to export or delete their health data. Additionally, as wearables are literally worn on the body, ensuring they are **physically safe and comfortable** (no harmful materials, no overheating batteries – there have been recalls in the past for devices causing burns) is critical.

In summary, the wearables sector is moving toward devices that are **more capable yet less obtrusive**. Consumers want wearables to be almost an extension of their body and lifestyle – providing useful insights at a glance (or a gentle buzz on the wrist), keeping them connected, and perhaps most significantly, helping them stay healthy and fit. The vision for 2030 is that wearing a device that keeps an eye on your well-being could be as routine as brushing your teeth – simply part of daily personal care. The challenge for companies is to maintain user trust and interest by ensuring these devices deliver accurate, actionable information and integrate elegantly into both the digital and fashion fabric of consumers' lives. The market trends are promising: strong double-digit growth indicates that more people each year are strapping on a smartwatch or trying new wearables, and as the tech matures, wearables could become as ubiquitous as smartphones, albeit in a diversity of forms to suit different needs.

AI Tools

Of all the categories in this report, **AI tools** are perhaps the most abstract yet potentially transformative for consumers. Unlike smartphones or wearables, which are physical devices, “AI tools” refer to software and services powered by artificial intelligence that consumers interact with. This includes **voice assistants**, **chatbots**, **generative AI applications** (for instance, AI that can create text, images, or videos on demand), and various AI-driven features embedded in apps and devices. Between 2025 and 2030, consumer-facing AI tools are expected to become vastly more powerful and prevalent, fundamentally changing how people get information, create content, and manage tasks. Let’s delve into what consumers want from these AI tools and how the landscape is evolving.

Mainstream adoption and familiarity: In the early 2020s, AI-driven tools like **chatbots** (e.g. **ChatGPT**) captured public imagination by demonstrating the ability to generate human-like text and answer questions. By 2025, these generative AI tools are no longer niche – more than half of adult consumers in some surveys report having used an AI tool in the past year. In the United States, for example, around 61% of adults had tried AI in some form in the last six months, and roughly **one in five** were using it on a daily basis, according to a 2025 study. When scaled globally, that suggests on the order of 1.5 to 2 billion people have at least experimented with consumer AI. This is an astonishing adoption curve; it took smartphones or the internet years longer to reach such penetration. The key point is that **AI tools are now familiar to a majority of consumers by the mid-2020s**, even if usage frequency and depth vary.

The types of AI usage span personal and professional life. People use generative AI chatbots to ask general questions, get cooking recipes, brainstorm ideas, practice languages, or receive advice. They use AI writing assistants to polish emails or even do schoolwork (controversially). They use AI art generators to create custom images or have fun with creative expression. Many productivity and creative apps – from Photoshop to office suites – have integrated AI features (like automatically generating an image or summarising a document) that consumers are gradually picking up. So, by 2030, consumers will expect **AI assistance in virtually every digital interaction**. Just as today one assumes any software has an “undo” function, tomorrow one might assume any writing app can suggest sentences or any customer service chat has an AI helper.

Natural interaction and conversation: A big consumer desire is that interacting with AI feels **natural and easy**. Early voice assistants like Siri and Alexa were useful but had clear limits and often rigid command structures (“turn on the living room light” needed that phrasing, for example). The latest AI models are far more flexible. Consumers want to be able to talk or type to AI like they would to a knowledgeable friend or assistant, without having to phrase things in a computer-friendly way. The progress here is significant: modern AI assistants can handle follow-up questions, maintain context over a conversation, and even respond to fairly complex or vague

prompts. By 2030, voice and text AI assistants are expected to be **far more conversational**. We're likely to see voice assistants that can hold multi-turn conversations that feel less robotic – perhaps even interjecting to ask clarifying questions or cracking a contextual joke. For example, if you ask your AI tool, "I'm going on a hike this weekend, what should I pack?", it might respond with a series of questions ("Sure, what's the weather like and how long is the hike? Also, any camping overnight?") to fine-tune its advice, much like a human planner would.

Personalisation and proactivity: Consumers consistently express that they would like AI tools to *know them* and tailor outputs accordingly. For instance, a generative AI that helps you draft messages would be more valued if it writes in your personal style. A recommendation AI (for shopping or media) is expected to learn your preferences rather than show generic popular items. By 2030, AI tools will likely leverage personal data (with permission) to become **deeply personalised assistants**. This could mean an AI chatbot that has memory of your past interactions, understands your schedule, your family members' names, your favourite restaurants, etc., and uses that to be more useful. This is like having a long-term personal assistant who gets better the longer they work with you. If you ask, "remind me to buy a gift for Alice's birthday", an AI integrated with your contacts and past notes would know who Alice is (maybe your sister), when her birthday is, and even what kind of gifts she likes based on previous chats.

The idea of **proactive AI** is also emerging: tools that don't just wait for commands but can suggest or act on your behalf when appropriate. A simple early example is your email or calendar suggesting "You have back-to-back meetings; would you like me to schedule a lunch break?" or your phone's assistant saying "You usually leave for work at 8, but traffic is heavy today; you should leave 15 minutes early." Consumers generally appreciate such helpful nudges *as long as they're accurate and not intrusive*. Striking that balance will be crucial. By 2030, the expectation may be that AI is a sort of guardian of one's time and interests – filtering the noise (maybe handling spam calls or sorting low-priority emails automatically) and highlighting what matters (reminding you of tasks you usually forget, or news topics you care about).

Generative creativity for everyone: One striking development is how AI has opened up creative possibilities to non-experts. With just a text prompt, anyone can create digital art or ask for a snippet of music, or get a draft of a poem. Consumers are excited by this democratization of creativity. People who might not have artistic skills can still realise ideas for a painting or graphic via AI image generators. Budding writers use AI to overcome writer's block. By 2030, generative AI could be a ubiquitous creative aid. For instance, imagine integrated voice commands in your smart glasses: you snap a picture of a sunset and say "make it look like a Van Gogh painting," and an AI instantly shows you that stylised image. Or you're decorating your living room and can ask an AI to "show me how the room would look with blue walls and a white sofa," and through AR it does just that. Consumers basically want AI to help them **visualize, prototype, and create** without needing technical skills.

However, with such power comes concerns – and consumers are increasingly aware of them. There's the risk of misinformation (AI “hallucinations” where it states false information confidently), intellectual property issues (using artists' styles without credit), and the need for discernment (just because AI wrote it doesn't mean it's correct or good). Therefore, one thing consumers will want (and that regulators will push) is **transparency** from AI systems. By 2030, AI tools might be expected to indicate their sources or have built-in fact-checking for factual queries. Also, content authenticity will be a big theme: e.g., watermarks or detection for AI-generated content to combat deepfake problems. Consumers generally want to trust what they see/hear, and AI will need to be part of the solution, not just the cause of the problem.

Integration across devices: Consumers see AI not as a stand-alone app but as a layer across all their devices and services. For example, the voice assistant that lives in your smart speaker at home should be the *same* core AI assistant on your phone and in your car's infotainment system. Tech companies are indeed moving toward such unified AI experiences. By 2030, you might have one personal AI that you can access through any interface – ask your living room smart display about your calendar or later ask your phone the same thing on the go, and it's all one continuity. This requires cloud synchronisation and cooperation across platforms, but it aligns with consumer desire for **interoperability**. No one wants to train or personalise five different AI assistants; they want one trustworthy companion. Companies like Amazon, Google, Apple will continue to vie for being that central AI (each hoping you use theirs exclusively), but there could also be independent AIs or open-source ones you can carry anywhere, akin to having your own AI model in your personal cloud that interfaces with different front-ends.

AI in everyday services: Apart from direct “assistant” uses, AI will quietly work in the background of many consumer services. Recommendation engines on Netflix or Spotify, personalized news feeds, smart home management (as we covered), even things like smart traffic routing in navigation apps – all will use AI to optimize experiences. The more it works well, the less consumers notice it (they'll just notice things are convenient or relevant). The flip side is if it works poorly, it annoys them (irrelevant recommendations, etc.). So the aim is to refine these such that consumers truly feel “this service understands me.” Already, younger consumers almost expect their apps to have some intelligence – like a shopping app that suggests items in their style, or a camera app that auto-enhances photos nicely. That expectation will be universal by 2030: if an app or device isn't using AI to improve user experience, it will feel outdated.

Education, work, and life assistance: AI tools are also influencing how people learn and work. Consumers (and students) want AI help in education – e.g., a personal tutor that can explain a tough concept in different ways until you get it, or help you practice problems. By 2030, having an AI tutor could be common, and perhaps integrated into educational platforms or even standard school-issued devices. This raises questions for educators (cheating vs learning aid), but from the student/parent perspective, many will want to leverage it for personalised learning support.

In workplaces, people will have AI assistants summarising meetings, drafting reports, and automating routine tasks. So the average consumer's skill set might shift – knowing how to effectively “prompt” AI and supervise its output could become as important as knowing how to use a word processor or search engine. Consumers, especially in business contexts, want AI that can *save time and reduce drudgery*. A common sentiment: “Let the AI handle the boring stuff so I can focus on more important or creative work.” Companies developing productivity AI target exactly that: email triage, note-taking, data analysis, etc., all accelerated by AI. For a general consumer, this might translate to things like automatically sorting personal photos, planning a trip with a full itinerary based on preferences, or even managing finances (imagine an AI that tracks your spending and suggests a personalised budget or savings plan).

Trust, safety, and ethical AI: A crucial factor for consumer acceptance is trust. As of 2025, trust in AI is a mixed bag: people are amazed by capabilities but also worry about risks (data privacy, bias, job displacement, etc.). By 2030, we foresee consumers gravitating towards AI tools from sources they trust and that demonstrate ethical practices. For example, if an AI assistant is known to be very secure (doesn't share your data, works offline when possible, and has strong privacy policies), privacy-conscious users will prefer it. If a certain AI tool is transparent about how it works and allows user oversight (like giving citations for facts, or letting you easily correct it), users will trust it more and stick with it. On the other hand, any major scandal – say an AI giving harmful advice or a data leak through an AI – could make headlines and dent confidence. The industry is aware of this and is working on **AI safety measures**: implementing content filters (to avoid hate speech or dangerous instructions), bias audits, etc. Consumers might not see all that under the hood, but they will definitely feel more comfortable if AI tools have guardrails that prevent egregious errors or misuse.

Interestingly, surveys show that a significant portion of consumers think tech is moving too fast without enough safeguards. Many want **human control** as a fallback – basically, AI as a copilot, not an unchecked agent. By 2030, design principles will likely ensure AI tools keep humans in the loop for important decisions. For mundane stuff, full automation is fine, but for anything sensitive, there might be confirmations or easy ways to undo AI actions. Manufacturers and service providers that highlight a “human-centric AI” approach could find it resonates with users who are wary of a pure machine-driven world.

Monetisation and value perception: Currently, consumer AI usage is high but monetisation is low – few people pay directly for AI services yet, they often use free versions. But the potential value is there (for instance, if an AI consistently saved you hours per week, what would that be worth to you?). By 2030, we may see more premium AI services or subscriptions bundled with products. Some consumers will pay for superior AI – e.g., a creative professional might subscribe to an AI that helps generate design ideas faster, or a busy executive might pay for an AI that serves as a scheduling and research aide. The key for companies will be proving the reliability and unique

capability of paid AI tools above free offerings. Alternatively, AI features might simply become an expected part of devices/software cost, and monetisation is indirect (e.g., making devices more appealing or keeping users in an ecosystem). Either way, the **economic impact** of consumer AI is slated to grow massively – not just direct revenues but efficiency gains for users (which is like value returned to them).

Examples of where AI tools might be by 2030 in daily life:

- **Communication:** AI auto-suggests responses in your messaging apps so often that you sometimes converse with auto-completions. Language translation is instant and built-in everywhere – you could speak your language and your phone outputs another in real time, helping cross-lingual conversations face to face. Spam and scam calls are almost extinct for those using AI call screeners.
- **Shopping:** Your AI assistant knows your sizing and style; you can literally say “I need a new outfit for a wedding” and it will show you curated options from various retailers, or even generate a preview of you wearing certain outfits. It also might handle price comparisons and negotiating (some services already do automatic coupon applying – by 2030 maybe your AI can negotiate with a seller bot for a better deal!).
- **Household management:** As part of a smart home, AI monitors home energy usage and security. It can suggest grocery lists and meal plans based on your fridge contents and dietary goals. It might even coordinate domestic robots (if by then we have advanced cleaning robots or kitchen robots) – e.g., telling a robot vacuum when to clean based on when you’re out of the house.
- **Entertainment:** Besides recommending content, AI might create it. Think personalised entertainment: you could have an AI-generated show or interactive story that adapts to your feedback or even includes a likeness of you (with permission). Some experts predict a rise of AI-generated media tailored to niche audiences or even an “audience of one.” For instance, you could say “AI, create a 10-minute bedtime story for my child involving our dog and a trip to space, in the style of Dr. Seuss,” and it does.
- **Social and companionship aspects:** There is also a phenomenon of AI companions – chatbots that provide company or a non-judgmental ear. By 2030 these could be more advanced and somewhat mainstream for people who want to talk through problems or combat loneliness. It’s a sensitive area (we don’t want people preferring AI to human contact in unhealthy ways), but it does fill a need for some and can even have therapeutic aspects if done carefully (some mental health apps use chatbot CBT techniques to help users manage anxiety, for example).

Consumers basically want AI that is **helpful, harmless, and on their side**. The novelty of AI being human-like will wear off; what will matter is results – did it make my day easier? Did it enable me to do something I otherwise couldn’t? There will be a learning curve (some jobs and tasks will shift, and people will need to adapt), but historically, useful tools get adopted widely even if initially there’s hesitation. By 2030, the average person might interact with AI dozens of times a day without even realising – and ideally with satisfaction that those interactions are productive or enjoyable.

In conclusion, AI tools represent a sort of invisible revolution in consumer tech: less about a new gadget you hold, and more about *imbuing intelligence into every gadget and service you already use*. The future that consumers seem to want is one where technology *truly serves them*, by handling the mundane, amplifying creativity, providing guidance when needed, and doing all this while respecting individual rights and values. It’s a challenging but exciting path, and the next few years will be critical in cementing trust and norms around consumer AI. Companies that lead in useful, ethical AI will likely become the household names of the next decade, just as smartphones dominated the last.

Broader Consumer Tech (Laptops, PCs and More)

While smartphones, wearables, and AI steal many of the headlines, the broader category of consumer tech – including **laptops, desktop PCs, tablets, and other personal electronics** – remains vitally important in 2025 and beyond. These devices are the workhorses for productivity, education, and entertainment. Consumers’ desires in this sphere may not always be as glitz as in new gadget categories, but they are no less significant. In fact, because these are mature product lines, consumer expectations are quite high: they expect reliability, continual improvement, and seamless integration with the rest of their tech ecosystem. Let’s look at key trends and wants in this broader consumer tech space, focusing on PCs (personal computers) and related devices.

Enduring role of PCs and laptops: Despite the rise of mobile devices, the traditional PC (whether a laptop or desktop) remains indispensable for many tasks. Office work, software development, content creation, gaming, and complex design/engineering work all often require the power or interface of a full computer. During the COVID-19 pandemic, PC sales saw a resurgence as remote work and schooling drove demand. Post-pandemic, that spike settled, but it reminded everyone that “PCs are not dead.” Going into 2030, consumers basically want PCs that are **powerful yet portable, versatile yet user-friendly**. The average consumer expects each new generation of laptop to be thinner, lighter, and faster than the last – but also to maintain or extend battery life, which is a constant ask.

Performance and silicon advances: One major trend in the latter 2020s is the shift in the CPU landscape. Apple’s success with its own ARM-based chips (Apple Silicon) in Macs showed the

potential for highly efficient, high-performance processors that deliver strong battery life and low heat. This has spurred the rest of the industry (Windows PC makers, chip manufacturers like Qualcomm and even Intel/AMD) to innovate. Consumers may not follow the chip details, but they feel the effects: newer laptops wake instantly, have battery life measured in many hours (some claiming 20+ hours on a charge under light use), and run cooler and quieter due to efficient chips. By 2030, it's likely that a significant share of laptops will use ARM-based or other new-architecture chips optimised for mobile-style efficiency, unless x86 chips catch up considerably. For consumers, the desire is clear: **no one wants a laptop that overheats on their lap or dies after a few hours off the plug**. They want smooth performance for everyday tasks and enough headroom for heavy tasks like video editing when needed.

AI and specialized hardware in PCs: Just as smartphones are adding neural processors, PCs too are incorporating AI accelerators. Microsoft's Windows 11, for instance, has started integrating AI features (like intelligent noise suppression for video calls, automatic framing with webcam, etc.) that leverage onboard AI chips where available. By 2030, we can expect PCs to come with dedicated AI co-processors as a standard component. Consumers might not buy a laptop *for* the AI chip per se, but they will appreciate what it enables: maybe an OS that can summarise documents for you, or an email client that drafts replies, or advanced security features like real-time malware detection using AI models. One can imagine laptops having personal AI assistants that function even offline thanks to these chips, which aligns with consumer interest in both AI functionality and privacy (since on-device AI means data doesn't always need to go to cloud).

Portability and new form factors: The clamshell laptop design has endured for decades for good reason, but there are new twists. We've begun to see **convertibles and 2-in-1 devices**: laptops that can turn into tablets by rotating or detaching the keyboard. Consumers enjoy the flexibility – use it in “laptop mode” for work, “tablet mode” for browsing or drawing if it supports a stylus, “tent mode” for watching movies, etc. By 2030, such versatility may be standard in many mid-range devices, unless pure tablets with keyboard accessories corner that use-case. Another emerging form is **dual-screen or foldable-screen laptops**. A few experimental models have two screens (replacing the keyboard with a second display, usable as a keyboard or for multitasking), and some have a single flexible OLED that folds (effectively turning the bottom half into a virtual keyboard or game controller or whatnot). These are nascent now, but consumers are intrigued by the possibilities – imagine a laptop that can expand into a larger display when needed or one that eliminates the keyboard when you prefer a big canvas for reading or art. There will be a balance though: many consumers are actually attached to their physical keyboards for tactile typing (especially professional writers, programmers, etc.). So, these new forms will complement rather than fully replace traditional laptops by 2030. The common theme is **choice** – consumers want to choose a device that matches how they like to work or consume content.

Displays and visuals: Consumers expect continual improvements in display technology on their personal devices. High-resolution screens, high refresh rates (for smooth scrolling and gaming), wide colour gamuts, and perhaps new tech like **OLED or mini-LED** displays for better contrast are increasingly desired even on laptops. Creative professionals will particularly appreciate better displays, but even general users notice the quality difference. By 2030, 4K screens might be common in mid-to-high end laptops (already some have them), and more laptops might adopt HDR-capable screens for better video playback. There's also talk of **glasses-free 3D** or spatial displays (some brands have demoed laptops that can show 3D content that you can see without special glasses, aimed at 3D designers or just entertainment). It's a niche, but shows that innovation continues in how content can be displayed. For most consumers, as long as text is crisp and video looks great, they're happy – but the bar for “great” keeps rising as they get used to their high-end smartphones.

Sustainability and longevity in PCs: Similar to smartphones, there's growing awareness and demand for sustainability in PCs. Many consumers would like their laptops to last longer and be repairable or upgradable. We've seen movements toward modular laptops (e.g., Framework Laptop, which allows users to easily swap out ports, storage, even the mainboard to upgrade CPU in the future). While these are still a tiny part of the market, they resonate with a certain segment (tech enthusiasts, environmentally conscious users, education sector etc.). By 2030, perhaps more mainstream manufacturers will incorporate at least some modular elements – or at the very least, make replacing batteries, SSDs, and RAM easier, since those are common failure or upgrade points. Indeed, the EU has been considering right-to-repair regulations which might mandate that certain components be user-replaceable or that spare parts be available for a number of years. If such rules come into effect, global companies will likely comply across the board, benefiting all users.

Longevity is also extended by software support. Consumers expect their computers to get updates for security and maybe even feature upgrades for many years. Windows and macOS are both mature and typically support machines ~5-7 years old or more with OS updates. That will likely continue or improve, as there's less need for radical OS overhauls and more focus on iterative improvement. From a user standpoint, the complaint with PCs often is that over time they get slow or cluttered. AI might assist here too, with smarter background maintenance or performance tuning so PCs remain snappy longer. By 2030, hopefully the idea that a 5-year-old laptop is unbearably slow will not be common – if it was decent to start with and has an SSD, it should handle typical tasks fine. Consumers certainly hope their \$1000 investment doesn't feel obsolete in two years.

Gaming and high-performance niche: A subset of consumer tech that's very prominent is gaming PCs and consoles. Gamers always seek more power (for higher frame rates, better graphics). This drives a lot of high-end PC sales and innovation in cooling, GPUs, etc. By 2030, if trends continue, we might have GPUs capable of photorealistic real-time rendering with

advanced **ray tracing** making lighting in games extremely realistic. Resolutions like 4K at very high refresh might be mainstream in gaming. But interestingly, there's also the rise of **cloud gaming** – where the heavy processing is done on servers and streamed to a device. If that model takes off (dependent on internet infrastructure), consumers might not need a bulky gaming PC at home, just a good screen and input device. However, as of mid-2020s, cloud gaming is still supplementary and many core gamers prefer local hardware for reliability and performance. For non-hardcore gamers, though, by 2030 services might let them play top-tier games on a modest laptop or even a TV with a controller by streaming, which broadens access.

Tablets and hybrid devices: Tablets had a boom earlier (around 2010s with the iPad), then plateaued as phones got bigger and laptops got lighter. They continue to have a place, especially for media consumption, reading, and casual use – or as secondary devices. The iPad and similar tablets are also pushing into laptop territory with keyboard accessories and more PC-like capabilities. Consumers want the *instant-on, ease-of-use* of a tablet *and* the productivity of a laptop, which is why the lines have blurred. By 2030, the distinction might be largely nominal: many tablets will be as powerful as laptops and vice versa, and it's more about whether you need a keyboard/desktop interface or a touch interface at a given moment.

One could foresee a scenario where your main “computer” is actually a convergence of devices: you might have a phone that seamlessly turns into a PC when connected to a monitor (already attempted by some systems like Samsung DeX), or a tablet that, when docked, runs full desktop apps. Consumers like the idea of continuity – start writing a document on one device, continue on another. Apple, Google, Microsoft all have been developing ecosystems where your work and media flows between your devices. By 2030, this **multi-device continuity** will be expected. People might not care which device they pick up – they just want their stuff accessible and synced, and each device to adapt (e.g., open a website on phone, then you can instantly throw it to your PC's browser when you sit down). This ties back to interoperability and ecosystem: companies that provide a cohesive experience across your phone, tablet, laptop, and even TV or car, will satisfy the consumer desire for simplicity and integration.

Voice and alternate inputs: In PCs too, voice control and dictation are becoming more viable with better AI. By 2030, it might be common for people to use voice for certain tasks on their computer (e.g., “computer, compile this code and run tests” or “open the budget spreadsheet and highlight any expenses over \$1000”). It sounds a bit Star Trek, but given how voice assistants are evolving, it's plausible. Not everyone will use voice, but the option can boost productivity or accessibility. Similarly, improved stylus inputs (for drawing, note-taking) on touchscreens, better trackpads, maybe even hand gesture recognition via the webcam (some systems can recognise when you make a gesture to advance slides, etc.). These alternate input methods can make interactions more natural or faster for particular tasks.

Connectivity and 5G/6G for PCs: Many laptops today still rely on Wi-Fi, but by 2030 perhaps every device could have cellular connectivity as an optional or standard feature (especially as 5G networks mature and 6G appears on the horizon). An always-connected laptop is very handy for remote workers and travelers, and consumers might start expecting it, just like tablets now often come with LTE/5G variants. The cost of data plans and efficiency will determine this. If 6G delivers extremely good speeds and if data is affordable, a laptop in 2030 might just always be online with no need to tether or find Wi-Fi. This again ties into the seamless expectation – whether I open my phone or laptop, I'm connected and can access cloud resources immediately.

Other devices: Broader consumer tech might also include things like **smart TVs, smart appliances, game consoles, digital cameras**, etc. Each has its own trends:

- **Smart TVs:** becoming larger, higher resolution (8K maybe, though content is limited), more integrated streaming and gaming capabilities (some TVs could run cloud gaming apps without separate console). Consumers expect their TV to be as easy to use as a phone in terms of interface responsiveness and app availability.
- **Audio tech:** headphones, smart speakers, etc., we touched on voice assistants in smart homes and wearables (earbuds). High-quality wireless audio and noise cancellation have become big. Possibly more personalised audio (some earbuds can tailor sound to your hearing profile).
- **Digital cameras:** Many consumers just use smartphone cameras now, so the dedicated camera market became niche for enthusiasts/professionals. Those that do buy cameras want either high-end quality or very specific usage (action cams, drones, etc.). By 2030, cameras will likely incorporate more AI (some already do for tracking subjects, etc.), and may integrate with phones better for quick sharing.

Consumer sentiment on tech overload: It's worth noting some consumers feel a bit overwhelmed by all the tech (digital detox trends etc.). There's a growing mindfulness about screen time and balancing tech usage. So one “feature” some consumers want is *less distraction* and *more meaningful use*. This manifests in things like focus modes on phones/PCs, or e-ink devices for reading without notifications. Tech companies are adding features to help people manage usage (app time limits, greyscale modes at night, etc.). By 2030, this could become a standard expectation: devices that *help you unplug or focus* when needed. A laptop might have an “environment” where all notifications off and a calming background to just write or think. Or systems that intelligently only interrupt you for truly important alerts. This is an interesting paradox – using tech to mitigate the issues caused by tech – but it's driven by consumer feedback that constant connectivity can be a double-edged sword.

In summary, the broader consumer tech category will progress in a somewhat evolutionary way: better performance, better design, improved integration, and incremental feature upgrades shaped by new tech (like AI, 5G). Consumers essentially want their tools – whether a laptop for work, a tablet for leisure, or a game console for play – to be **fast, friendly, and fitting into their digital lives smoothly**. Unlike newer categories where they might be wowed by a single new feature, here it's about *refinement* and *reliability*. If their next laptop boots instantly, lasts all day, never crashes, and connects with everything else, they'll be quite satisfied. And that is what manufacturers will aim to deliver by 2030, leveraging the background advancements in processors, software, and connectivity to make the computing experience as seamless and empowering as possible for the end user.

2. Consumer Behaviour Insights

Understanding **consumer behaviour** is crucial for interpreting all the tech trends we've discussed. After all, consumer preferences, habits, and concerns ultimately determine which technologies succeed in the market. In the period from 2025 to 2030, consumer behaviour around tech is characterised by a mix of enthusiasm for new capabilities and caution regarding the implications of technology in their lives. Here we synthesise some key insights about how consumers are approaching technology usage and purchases, cutting across the categories:

1. Ubiquitous connectivity and multi-device lifestyles: Consumers today live in an environment saturated with connected devices. It's now common for an individual to have a smartphone, a laptop or tablet, a wearable device, and perhaps smart home gadgets – all connected to the internet. By 2025, the average household in advanced economies had well over a dozen connected devices, and that number is climbing. This has led to behaviour where people **expect information and services to be available everywhere, instantly**. For example, a consumer might start streaming a movie on their TV, then continue on their tablet in bed. Or they might receive a notification on their smartwatch and respond to it via voice without touching a phone. Consumers are developing fluid usage patterns: switching between devices depending on context (work vs. travel vs. home lounging), and often using multiple devices simultaneously (like browsing on phone while watching TV). This multi-device reality means consumers highly value **synchronisation and continuity**. If a text message or alert comes in, they want to see it on any screen they're near. If they take a photo on their phone, they expect to easily access it on their PC later. Companies have reinforced this with features like cloud syncing and "handoff" of activities between devices. As a result, consumers are increasingly brand-conscious in the sense that staying within one ecosystem (Apple, Google/Android, Microsoft, etc.) can yield a smoother experience. Many users do mix ecosystems (e.g., an iPhone with a Windows PC), but even then, they seek apps and solutions to bridge any gaps (like using web apps or third-party services that work on all platforms). Essentially, **interoperability is not just a tech standard issue but a daily behavioural expectation** – people want their gadgets to talk to each other and act in concert.

2. Demand for convenience and instant gratification: Modern consumers are sometimes described as having a "now" mindset when it comes to digital services. The rise of features like one-click ordering, same-day deliveries, streaming on-demand, and so forth, has fostered an expectation that things should happen quickly and effortlessly. In terms of device behaviour, this translates to impatience with slow or clunky technology. Long gone are the days when one would wait minutes for a PC to boot or tolerate a slow-loading website. If an app is sluggish or a device takes too long to respond, consumers may abandon it. This has put pressure on tech providers to optimise performance and minimise friction at every step. For instance, biometric authentication (fingerprint, face ID) is popular because it's both secure and quicker than typing passwords. Voice commands can be quicker than navigating menus. Fast-charging in phones addresses impatience

with charging times. We also see this in content consumption behaviour: the prevalence of short-form videos (TikTok, etc.) points to appetite for quick, easily digestible content. Multi-tasking is another aspect – consumers often multitask across apps and screens, expecting devices to handle it (like quickly switching between apps without lag). Convenience is king: any feature that simplifies a process (like autofill for forms, or remembering preferences) caters to this desire. In sum, consumers reward products and services that *save them time or effort*, and they get frustrated with those that create unnecessary delays or steps.

3. Personalisation vs. privacy – a balancing act: Consumers want personalised experiences – recommendations that fit their tastes, news that matches their interests, UI themes that they can customise, etc. Many are willing to share some data or preferences to get that personal touch. For example, users often allow location access on apps because they want location-specific results (weather, map routes, nearby restaurants). They enjoy when Netflix or Spotify seems to “get” what they like. However, the tolerance for data sharing has limits and has tightened in recent years. Scandals like Facebook’s data breaches, or just increased awareness due to laws like GDPR prompts, have made consumers more wary. Polls show a large and growing portion of users are concerned about how their data is used. Many will disable or opt-out of tracking when given a clear choice. So behaviorally, we see consumers taking small steps to guard privacy: adjusting app permissions, using privacy modes on browsers, even using ad-blockers or VPNs in some cases. Still, not everyone is tech-savvy enough to do this thoroughly, and convenience often trumps privacy in immediate decision-making (i.e., they might click “accept all cookies” to get rid of the popup). It’s a bit of a paradox: **consumers expect highly personalised, intelligent services, which often rely on data – yet they also expect companies to not overreach or exploit their personal information.** The upshot is consumers gravitate towards brands that have a reputation for respecting privacy (for instance, Apple has made privacy a selling point). They also appreciate transparency (clear privacy settings, dashboards showing what data is collected, etc.). Trust is a huge factor; if a company violates trust, consumer backlash can be strong (e.g., WhatsApp’s controversial policy change in 2021 led many to explore alternatives like Signal). For businesses, this means providing personalisation in a way that’s user-controlled and privacy-first. For consumers, it means increasingly scrutinising the trade-offs: “Do I let this app know my contacts if it gives me better recommendations? Should I let my voice assistant store recordings to improve recognition, or is that too invasive?” Younger users seem somewhat more comfortable with sharing data (having grown up in a social media era), but they too are cognizant of privacy – often migrating to platforms perceived as less data-hungry (note the popularity of Snapchat initially for ephemeral messaging, or the use of finsta (fake Instagram accounts) for smaller circles). By 2030, as the Deloitte study earlier indicated, consumers demand both innovation and control – they want the benefits of their tech but also the reassurance that they can see and manage how it works with their data.

4. Tech as a reflection of identity and values: Consumer behaviour around tech purchases is not just rational (“what specs do I get for the price?”) but also emotional and social. The brand and type of tech someone uses can be a statement of personal identity or values. For example, some people align with a brand because it signifies creativity (like Apple historically in design communities), or open-source ethos (preferring Android or Linux for more control), or status (having the latest flagship phone or a high-end gaming rig might confer social points in some circles). Sustainability is increasingly entering this equation – environmentally conscious consumers might favor a brand that uses recycled materials or has eco certifications. Likewise, some consumers consider the ethical stance of companies (data ethics, labor practices, etc.) when making choices, a trend that could grow by 2030 as more Gen Z and Gen Alpha (generally quite values-driven) become primary consumers. We see this manifesting in small ways: e.g., a surge of interest in Fairphone (a niche smartphone focused on ethical sourcing and repairability) or in buying refurbished devices to reduce e-waste. Of course, price and functionality usually remain top drivers for most people, but when options are comparable, values can tip the scale.

In terms of behaviour, this means consumers do research, read reviews, and even scrutinise the philosophy of companies more than before. They are empowered by the internet to be relatively informed buyers (though misinformation can circulate too). Unboxing and review videos, influencer opinions, and peer reviews on sites all play into purchase decisions. A savvy consumer in 2025 doesn't just walk into a store and pick a phone; they often have read multiple comparisons and sought opinions online. This will only increase by 2030, possibly with AI assisting in collating reviews (“Hey assistant, what do most reviewers say about the battery life of this gadget?”).

5. The evolving purchase cycle (longer usage, secondary markets): As devices become more durable and incremental in improvements, consumers are not upgrading as frequently as in the past. For instance, the smartphone replacement cycle has lengthened from the ~2-year contract-driven cycle to more like 3-4 years in many markets. This is because even a 3-year-old phone today can run most apps fine, and at some point, the “wow” new features aren't enough to justify full price for every user. Many consumers are choosing to get more mileage out of their devices to save money or reduce waste. This behaviour has given rise to a robust **second-hand market** for electronics. It's now common to sell your old phone or laptop online or trade it in when buying a new one. This not only offsets cost but appeals to the sustainability-minded who prefer reusing devices. By 2030, the refurbish/reuse economy in tech is likely to be even larger, possibly aided by manufacturers themselves (as some already run trade-in programs, certified pre-owned device sales, etc.). A related behaviour is purchasing refurbished or older models to save money – not everyone chases the newest. For example, someone might specifically buy last year's smartphone model because it's significantly cheaper yet nearly as good.

The implication is that consumers are segmenting: enthusiasts upgrade often and early, value-seekers upgrade slowly and often buy slightly older tech. Both segments are important. The

enthusiast early adopters help popularise and give feedback on new features; the mainstream value-seekers ensure long-tail sales and wider adoption later. Companies often tier their products accordingly (hence the rise of “premium” vs “midrange” models in phones, etc., to capture different budgets and upgrade cadences).

6. Growing concern about tech’s impact and desire for control: As much as people love what tech does for them, there is a growing undercurrent of concern about screen time, social isolation, misinformation, and the overall *impact of technology on mental and societal well-being*. We see behavioural changes like digital detoxes (some people take deliberate breaks from social media or limit their screen time). Features that track screen time or enable focus (like Apple’s Screen Time, Android’s Digital Wellbeing) are responses to this. By 2030, more consumers may exercise active control over their digital consumption – for instance, using modes that restrict notifications during certain hours, or preferring apps that promote healthier engagement (say, an Instagram user might switch to more private sharing to avoid the anxiety of public likes). There’s also a trend of nostalgia or return to simpler tech among some groups – e.g., the resurgence of vinyl records in music, or people buying “dumb phones” (basic phones) to escape constant connectivity. While these are niche, they signal a desire among some consumers to escape hyper-digital life at least temporarily.

Therefore, consumers appreciate tools that *help them moderate* tech use. A platform that auto-filters toxic content or a device that has an easy “do not disturb” toggle is catering to this. The concept of “digital well-being” is now a selling point: apps and devices that claim to be better for your mental health, less addictive, etc. By 2030 this could be mainstream – like ratings or labels on apps for how they handle user well-being.

7. Regional differences and global trends: It’s also worth noting consumer behaviour is not monolithic worldwide. For example, European consumers tend to be more privacy-conscious on average, partly due to cultural norms and GDPR regulation reinforcing that. US consumers often are early adopters of subscription services (e.g., many pay for multiple streaming, gaming, cloud subscriptions) whereas in some developing markets prepaid or one-time purchase models still dominate due to income patterns. In parts of Asia, “super-apps” (apps that do everything from chat to payments to shopping) are popular (e.g., WeChat, Grab, GoJek), showing a behaviour of preferring one integrated platform versus using many separate specialised apps as is common in the US/EU. These behavioural patterns affect how companies must approach those markets. Nonetheless, many broad trends (like rising device penetration, appreciation for convenience, concerns about privacy) are global in nature, just manifesting with local flavour.

8. Influence of generation and demographics: Younger generations (Gen Z, Gen Alpha) who grew up with touchscreens and AI take technology even more for granted, and they tend to adapt to new interfaces faster. They also drive trends like the centrality of social media and communication preferences (for instance, younger people often prefer texting or voice messages

over voice calls, and now maybe short video messages). Their behaviour influences older generations (parents/grandparents pick up FaceTime or WhatsApp to stay in touch because the kids use it). As this cohort matures, their expectations (immediacy, social connectivity, socially conscious brands, etc.) will shape mainstream tastes. Meanwhile, older generations are increasingly tech-savvy out of necessity (even seniors got into video calls during the pandemic). However, companies still need to account for accessibility and simplicity for those who aren't digital natives. Consumer behaviour among seniors might lean towards reliable, no-frills tech (some still prefer larger screens, physical buttons, etc.). Businesses like the smart home segment see potential in older adults' needs (monitoring, simplicity) and will tailor accordingly.

In summary, consumer behaviour in the latter 2020s is defined by an embrace of the benefits of connectivity and personalisation, tempered by a cautious awareness of the downsides like privacy invasion and digital burnout. Consumers are not a passive audience; they adapt their usage patterns thoughtfully: juggling multiple devices to optimise convenience, making trade-offs between personal data and personalised experiences, extending device lifespans for economic and ethical reasons, and seeking both cutting-edge features and a measure of control over those features. Companies that succeed will be those that keenly observe these behaviours and align their products with how people **really** use tech in daily life – which is often in ways that blur work and play, online and offline, and individual and social. The more technology becomes integrated into every facet of life, the more consumers will insist it be on *their terms*: useful, respectful, and enriching rather than detracting.

3. Market Forecasts

The consumer tech market is poised for significant growth from 2025 through 2030, but the growth is not evenly distributed across all segments. In this section, we present high-level market forecasts and projections for key categories – smartphones, smart home devices, wearables, and consumer AI – and we highlight the broader trends such as regional growth patterns and overall industry trajectory. These forecasts are based on current data and trends, and they give businesses a sense of where the most robust expansion and investment opportunities lie.

Smartphones: The global smartphone market is maturing, especially in developed regions where penetration rates are high (smartphone ownership in many countries exceeds 80-90% of adults). As a result, growth in unit sales is slowing and largely driven by replacement cycles and emerging market adoption. According to recent forecasts, the smartphone market is expected to continue growing in value but at a modest pace. By 2030, the global smartphone market is projected to reach around **\$850–900 billion in annual revenue**, up from roughly \$500–600 billion in the mid-2020s. This corresponds to a compound annual growth rate (CAGR) in the mid single digits (on the order of 5–7% per year). Unit shipments might plateau around 1.5–1.6 billion units per year globally, as markets saturate and consumers hold onto devices longer, but average selling prices (ASPs) are creeping up slightly due to premium models (5G devices, foldables) commanding higher prices – partially offset by the availability of more budget models in emerging markets. Regions like **India, Southeast Asia, and Africa** still have room for new user growth, whereas the **US, Europe, and China** will see primarily upgrade-driven sales.

Within the smartphone market, some sub-trends: 5G phones have essentially become standard in new sales by mid-decade, but by around 2027–2028 we might start to see the first 6G-ready devices (though 6G network rollouts will be in initial stages). That might spur a mini upgrade cycle toward 2030 for enthusiasts wanting the latest connectivity. However, because 6G's benefits might be more enterprise/IOT-focused initially, it may not create as big a consumer spike as 4G or 5G did. Another factor is **premium vs midrange mix**: the high-end segment (flagships above, say, \$800) is steady or growing in value share, as a subset of consumers are willing to pay top dollar for the best cameras, screens, and performance – this keeps profitability in the market. Meanwhile, midrange phones are becoming very feature-rich, putting pressure on flagship differentiation. By 2030, even \$300 phones will likely have features like very good AI cameras, robust chip performance, and decent waterproofing. This means market value growth might concentrate more in services and ecosystem (apps, subscriptions) around phones, as hardware becomes somewhat commoditised at mid-low end.

Smart Home Devices: The smart home sector is one of the fastest-growing areas in consumer tech. Analysts project the **global smart home market** to expand dramatically, potentially reaching **\$500+ billion by 2030** (for context, it was estimated around \$100-150 billion in the early

2020s). This implies a CAGR on the order of 20-30%. Some estimates even suggest a near doubling every few years due to the relatively low base and many households still yet to adopt comprehensive smart home systems. Growth drivers include increasing affordability of devices, improved interoperability (as discussed, standards like Matter reducing friction), and genuine utility demonstrated in use-cases like energy saving and security.

Breaking it down: categories like **security (smart cameras, smart locks, alarm systems)** and **energy management (smart thermostats, smart lighting)** currently lead adoption and are expected to remain strong. Security devices hold the largest market share (nearly 30% of smart home device revenue in mid-2020s) and should continue robust growth as home security demand is universal. **Smart speakers and voice assistant hubs** saw explosive growth initially (since 2016 onward) – growth is leveling as many homes now have one, but they're becoming an entry point for broader ecosystems (thus more peripheral sales like smart plugs or bulbs). By 2030, voice assistants will likely be in an even higher percentage of homes (perhaps 75%+ of connected households in the US/EU) whether via speakers, TVs, or appliances with built-in assistants.

Regional outlook: North America and Europe were early leaders in smart home adoption. Europe's smart home market is forecast to grow at a strong clip (some reports put it above 25% CAGR) especially as EU initiatives around energy efficiency drive smart thermostat uptake and the like. The US similarly sees healthy growth, fueled by both tech-savvy consumers and home builders starting to integrate smart features into new homes as standard. The **Asia-Pacific region** is expected to be the fastest growing, owing to rising incomes and new housing developments in China, India, and Southeast Asia often leapfrogging to include smart infrastructure. By 2030, Asia-Pacific may become the largest smart home market globally in volume, given sheer population and increasing urban middle class – with growth rates in markets like China possibly above 30% annually in this sector.

One thing to watch is how much of the revenue stays hardware vs shifts to services (like subscription monitoring, or AI services layered on devices). By 2030, a portion of smart home revenue will come from subscriptions – e.g., a monthly fee for cloud storage of security camera footage, or premium voice assistant capabilities, or integrated home insurance packages that come with smart sensors. This recurring revenue aspect is attractive to companies and could boost the market value beyond device sales alone.

Wearables: The wearables market is set to continue its strong growth trajectory through 2030. In 2024 it was around \$80-100 billion in size; by 2030 forecasts suggest it could reach **\$150–200 billion**. That is roughly a CAGR of 12-15%. Several factors drive this: ongoing innovation in smartwatches (making them more essential, e.g., with health features), expansion of wearables to new forms (like AR glasses, which if they take off could add a significant new revenue stream to

this category), and broader adoption as prices come down for basic trackers particularly in emerging markets.

Smartwatches are the largest segment currently (over half of wearable revenue) and will likely remain so in the near term. Apple, Samsung, and increasingly some Chinese brands dominate volumes. Medical and health applications might even see some wearables covered by health insurance or recommended by doctors (like using a continuous ECG monitor watch for patients with heart conditions), which could accelerate uptake among older demographics. If by 2030 there's an FDA-approved glucose-monitoring smartwatch, for instance, a whole new set of users (diabetics) may adopt wearables specifically for that feature. **Fitness trackers** (simpler bands) have plateaued a bit as many have upgraded to full smartwatches, but they still hold appeal for being cheaper and very lightweight – this segment might see modest growth or replacement by basic smartwatches that are similarly priced.

We should consider **AR/VR headsets**: While currently the revenue from these is smaller relative to watches, they have high ASPs and significant potential if mainstream consumer adoption materialises (e.g., Apple's foray with Vision Pro and expected iterations could create a sizable luxury market for AR/VR devices). Some forecasts count these in wearables, others separately. Assuming they're included, if even 5-10% of smartphone users have some AR glasses by 2030, that's tens of millions of units, potentially tens of billions in revenue (since these devices might cost \$500-\$1500 each). But this is one of the more unpredictable areas – it could boom or remain niche depending on tech and cultural factors.

By region, **North America** has the highest wearable adoption rate currently (one estimate said a third of US adults had a smartwatch or fitness band in 2023). Europe is similar slightly lower. These markets will see growth by deepening penetration (maybe approaching 50% of adults by 2030 as health features lure new users like seniors, etc.) and by replacements/upgrades. **Asia-Pacific** is the fastest growing in volume – especially China and India where a mix of local brands (Xiaomi, Huawei, etc.) offer affordable wearables. The APAC wearable market could well overtake the US in sales volume by 2030 just due to population scale, even if per capita adoption still lags a bit. As mentioned, North America currently forms about a third of wearable revenue and is expected to remain a major chunk, but the share might tilt more towards Asia-Pacific by 2030 in terms of units.

AI Tools and Services: Quantifying consumer AI tools as a “market” is a bit different because much of it is software and often bundled into products or offered free to gain users. However, by looking at related metrics, we can gauge growth. The generative AI segment specifically has skyrocketed with investment and interest. The global generative AI market (enterprise + consumer) was valued only around \$17 billion in 2024, but is projected to reach over **\$100 billion by 2030** –

a stunning ~35-40% CAGR. A lot of that is enterprise, but consumer usage is a major portion of the user numbers if not revenue yet.

If we consider how many people are using AI tools: by 2025, ~2 billion people had at least tried them (as per surveys), yet direct spending by consumers on AI subscriptions was estimated around \$12 billion/year, which is a tiny fraction of the potential. This indicates an enormous gap/opportunity. Even if a small percentage of those billions of users start paying for premium AI services, the consumer AI revenue could multiply. For instance, if by 2030, 10% of 2 billion users each spent \$10/month on AI tool subscriptions (just a hypothetical scenario), that's \$24 billion a year. Industry analysts are indeed forecasting tens of billions in new consumer AI revenue by 2030 as companies find ways to monetise advanced AI features (through standalone apps, or premium device features, etc.).

We should also note the **AI-as-a-service** angle: big tech companies might incorporate AI in their cloud services and indirectly monetise consumer AI usage through B2B2C deals (e.g., partnerships where your bank uses an AI from OpenAI to offer you a chatbot in their app – the bank pays OpenAI, not you directly). But for the consumer tech industry, the presence of powerful AI is likely to increase device sales too: for example, marketing a phone or appliance as “AI-powered” can justify higher prices if consumers perceive real value (like a fridge that inventories and orders food might command a premium, or a car with AI driving assist features likewise).

Broader industry and strategic outlook: Putting it all together, the overall consumer technology sector (hardware, software, services) is continuing an upward trajectory. People's reliance on tech in daily life is only growing, and new areas like IoT, automotive tech, and the metaverse (if that materialises) are expanding the definition of consumer tech. Some estimates put the total consumer electronics market at around \$1.5 trillion by 2030. Within that, hardware might be a slightly smaller proportion compared to today, as services take a larger share. Many tech companies are aiming for more recurring revenue (subscriptions, app stores, etc.) rather than just one-off device sales. For instance, Apple's and Samsung's push into services and ecosystems shows they expect future growth not just from selling devices but from what they can sell *through* those devices (apps, media, financial services, etc.).

Key growth regions: We've mentioned APAC as a high-growth area in multiple categories. Indeed, Asia (especially China, India, and Southeast Asia) will account for a huge portion of new tech consumers by 2030 given population and economic trends. Africa and the Middle East are also emerging – smartphone penetration is rising fast in Africa and it could be a major new market for affordable devices and services. The US and Europe will remain lucrative but relatively slow-growth (low single-digit annual growth in many product categories, with replacement sales dominating). Latin America is intermediate – growing faster than US/EU in many tech segments (due to improving connectivity and incomes), but facing some economic volatility.

Effect of economic cycles: It's worth noting these forecasts assume stable macro-economic conditions. Consumer tech can see fluctuations with the economy (for example, PC and smartphone sales saw a dip in 2020, then a boom as remote work hit, then a dip again in 2022 as demand was saturated and inflation cut spending). Over a five-year span, such ups and downs average out but companies need to be resilient to short-term shifts in demand. For instance, right now (mid-2020s) we saw a slight cooling in smartphone and PC sales after pandemic highs, but many expect a return to a normal upgrade cycle by 2024-2025.

Strategic implications of forecasts: High-growth areas (smart home, wearables, AI) are attracting lots of competition and investment. This often leads to consolidation or shake-outs: we might see acquisitions in smart home (bigger fish buying niche smart appliance makers to integrate, etc.) or new dominant platforms emerging. For example, whoever leads in AR glasses (if that takes off) might capture ecosystem power akin to what smartphones have today. Slower-growth areas like laptops will see innovation to differentiate and entice upgrades (AI features, new form factors as discussed).

Also, revenue shifting to services means traditional hardware OEMs may try to pivot to service models (like bundle insurance or content or premium support). The forecasts clearly show that relying on just selling devices may not yield the same growth as before, so diversification is a big strategic theme.

In conclusion, the period up to 2030 looks optimistic for the consumer tech sector as a whole, with healthy growth driven by innovation and increasing digital adoption globally. However, the growth is uneven: **explosive in emerging categories** (e.g., home IoT, AI services), **solid in augmenting categories** (e.g., wearables enhancing health), and **steady but slower in mature categories** (smartphones, PCs). Companies should align their investments to these trends – capitalising on high-growth segments and differentiating in stable segments. The data shows a world where technology spending continues to climb as tech becomes even more intertwined with everyday living, work, and health. Even if device unit growth slows in saturated markets, the value per user is rising as more devices per person and more services per device become the norm. Overall, the next five years promise ample opportunity, especially for those who anticipate consumer needs and pivot accordingly.

4. Strategic Implications

Given the trends and insights detailed in this report, what should companies in the consumer tech sector do to succeed in the latter half of this decade? Below, we outline key strategic implications and recommendations for businesses – from device manufacturers to software developers and service providers. The overarching theme is that **consumer expectations are higher than ever and rapidly evolving**. Companies need to be agile, consumer-centric, and forward-thinking to meet these expectations in a profitable and sustainable way.

- **Innovate with Purpose – Focus on Consumer Value:** Innovation should be guided by the core question, “*How does this improve the consumer’s life?*” The era of tech for tech’s sake is fading; consumers are less impressed by gimmicks and more by tangible benefits. Whether it’s a smartphone with an AI that genuinely eases daily tasks, or a wearable that provides life-saving health alerts, make sure your product’s innovations align with clear consumer desires (like convenience, health, security). Conduct user research and usability testing rigorously to identify pain points and solve real problems. For example, instead of adding a multitude of new features that users may not use, consider perfecting a few key features (perhaps long battery life and strong privacy safeguards) that resonate strongly with your target demographic. In practical terms, this might mean prioritising R&D in areas like battery technology, AI-driven software enhancements, or seamless device integration – as these directly map to user demands we’ve identified. The companies that win will be those whose products consumers find *indispensable* because they offer meaningful improvements in daily routines.
- **Embrace AI – but Responsibly:** AI is a double-edged sword – it offers game-changing capabilities but also comes with risks. Companies should integrate AI and machine learning into their devices and services to provide personalised, smart experiences (from cameras that automatically enhance photos, to voice assistants that manage complex tasks). However, *responsible AI* practices must be front and centre. This includes ensuring data used for AI is handled with privacy and security in mind, algorithmic decisions are transparent (or at least explainable to users in simple terms), and biases or harmful outputs are rigorously tested for and mitigated. There is both ethical and strategic value in this: brands that deploy AI thoughtfully will earn consumer trust and likely face fewer regulatory hurdles. Concretely, a business could establish an AI ethics review board for its products, include user-consent toggles for AI features, and provide easy ways for users to correct or give feedback on AI outputs (making the AI better and showing respect for user agency). Responsible AI isn’t just about avoiding negatives; it can be a selling point (“Our smart home learns your preferences on-device, so your data never leaves your home.”).

- **Prioritise Privacy and Security as Core Features:** In the eyes of the informed consumer (and certainly regulators), privacy and security are not optional – they are baseline expectations. Make privacy a design principle, not an afterthought. This can involve strategies like **data minimisation** (collect and retain only what you truly need for the service), **edge computing** (processing user data on the device when possible, rather than sending everything to cloud servers), strong encryption for data at rest and in transit, and giving users accessible controls over their data and permissions. Communicate these practices clearly to users – transparency can differentiate your brand. On security, ensure regular updates and patches are provided (and communicated in a user-friendly way, possibly auto-installed in the background) to keep devices safe from threats. Consider adopting or even helping to define industry standards/certifications for IoT security, which can reassure consumers (for instance, a “Secure Smart Home” seal similar to how organic food has certifications). Being proactive here not only avoids the costly fallout of breaches but can be a market advantage as consumers gravitate to products known for robust privacy/security.
- **Interoperability and Partnerships:** As the consumer ecosystem expands, no company can (or should) operate in a silo. Interoperability – making sure your device or service works well with others – is crucial. We’ve seen how frustration with fragmented smart home devices spurred the creation of the Matter standard; similarly, consumers favor platforms that play nicely together. Strategically, companies should **adopt open or widely-used standards** where possible (e.g., compatibility with Matter, support for health data standards to sync wearable info to various health apps, etc.). Furthermore, seek **partnerships** to enhance ecosystem value: e.g., a wearable maker partnering with a popular health app or insurance company for added services, or a smartphone maker ensuring its phone interfaces smoothly with major car infotainment systems, smart TVs, etc. Cross-industry collaboration (tech with automotive, health, finance sectors) can create new value propositions – like perhaps a home security provider partnering with an insurance firm to offer reduced premiums for smart-secured homes. The strategic mindset here is to view your product as part of a larger consumer tech tapestry and leverage synergies rather than trying to lock customers into a completely proprietary world. Consumers appreciate flexibility and will reward brands that allow them to mix and match their favourite products.
- **Sustainability and Ethical Practices:** Align your business with the growing consumer emphasis on sustainability. This goes beyond using green rhetoric in marketing – it means real action in product design, supply chain, and end-of-life management. Companies should invest in **sustainable materials** (recycled plastics, responsibly sourced minerals), design for longevity and repairability (which may involve modular designs or at least easy battery and screen replacements, etc.), and establish **recycling/trade-in programs** to

handle old devices responsibly. These steps not only appeal to eco-conscious consumers but also pre-empt regulatory pressures (which are increasing, especially in the EU). Additionally, social sustainability – ensuring ethical labor practices in manufacturing, for instance – can't be ignored, as consumers do factor in brand reputation when making choices. Make these initiatives visible: publish sustainability reports, label products with carbon footprint or recycled content info, get certifications where applicable (like Fairtrade gold in electronics, etc.). A strong stance on sustainability can differentiate products in a crowded market and foster customer loyalty – many younger consumers, especially, prefer brands that align with their values.

- **Diversify Revenue Streams – Hardware, Software, Services:** The trends indicate that while hardware will remain important, growth (and margin) may increasingly come from software and services around that hardware. Companies should adopt a holistic product strategy: think of each device sale not as a one-off transaction but as the start of a customer relationship that can be monetised through services. For instance, if you sell a smart home hub, can you offer a premium security monitoring service or cloud video storage for a monthly fee? If you sell a smartwatch, perhaps offer a subscription for advanced health analytics or coaching. However, be careful to ensure **real value** is provided if asking for subscriptions – consumers are mindful of subscription fatigue. Bundling services or adopting flexible models (like one-time feature unlock payments) can be attractive. Moreover, leveraging data (in a privacy-compliant way) can enable new features or even B2B partnerships (like anonymised health trends data to healthcare providers, again only if privacy allows). The key is to build an ecosystem around your products that keeps customers engaged and willing to spend beyond the initial purchase. This also cushions against hardware market volatility. Many leading tech firms are already excelling at this (e.g., Apple with iCloud, Apple Music, etc., or Microsoft pivoting from one-time Office sales to Office 365 subscriptions). Follow suit in a way appropriate for your niche.
- **Adapt Marketing and Customer Engagement:** As consumers become more discerning and informed, marketing needs to be authentic, informative, and engaging across multiple channels. Storytelling around use-cases works well: show *how* your product fits into and improves a consumer's life rather than just listing specs. User-generated content (testimonials, community forums, social media engagement) can build trust – people often rely on peer reviews. Consider investing in community-building: for example, a forum for users to share automation scripts for your smart home system, or challenges and leaderboards for fitness tracker users – this not only promotes active use but also free word-of-mouth marketing. Additionally, ensure your customer support and after-sales service is top-notch, because a single bad experience broadcast on social media can dent a reputation. In an age where consumers often make purchase decisions based on online reviews and sentiment, a strategy of *delighting the customer at every turn* becomes a form of marketing

itself (people will talk about it). Emphasise also any certifications or independent endorsements (for privacy, security, sustainability as mentioned) in marketing – as those build credibility. And importantly, tailor marketing messages to different regions and demographics, as behaviour insights show different priorities (for example, emphasise privacy in Europe, cutting-edge features in tech-forward Asia, value-for-money in price-sensitive markets, etc., while still maintaining a consistent core brand identity).

- **Prepare for Regulatory Changes:** The period up to 2030 will likely see increased regulation in areas of data privacy (e.g., more GDPR-like laws worldwide), AI usage (ensuring no harmful outcomes), right to repair, and environmental impact (like e-waste directives). Companies should not adopt a reactive, grudging compliance stance but rather get ahead of these. Proactively engaging with regulators and helping shape sensible policies can avoid being caught off-guard. Internally, perform compliance audits and build design principles that naturally adhere to likely regulation (for instance, implementing privacy-by-design as a default will make compliance with any new privacy law easier). By doing so, you avoid fines and disruptions, and also can turn compliance into a competitive advantage (“we’re already compliant with future standards X, Y, Z – so businesses and consumers can trust our solutions long-term”). Also keep an eye on international trade developments; supply chain diversification might be prudent considering geopolitical uncertainties – this isn’t a consumer-facing point per se, but it secures your ability to deliver to consumers consistently (as the chip shortages of early ’20s taught many, supply chain resilience is key).
- **Invest in Talent and Culture:** Finally, achieving all the above strategic goals requires having the right talent and an innovation-friendly culture within the organisation. The tech industry is dynamic; companies must be able to iterate quickly and not be afraid to pivot when consumer signals or technology shifts call for it. Encourage a culture of continuous learning – e.g., keep your teams up to date on AI skills, user experience design thinking, and emerging technologies. Foster diversity in teams as well, as that leads to products that cater to a broader audience without blind spots. Sometimes big disruptions come from startups – incumbents should keep an eye on the startup scene for partnership or acquisition opportunities if someone builds a better solution that complements your portfolio (as big firms often acquire small ones doing innovative work in AI or IoT). Keeping the organisation agile, curious, and consumer-focused from top to bottom ensures you can not only plan strategy but execute it effectively amid fast changes.

In summary, the companies that will thrive towards 2030 are those that **deeply understand their consumers and are proactive in delivering what they want (and need)** – sometimes even before the consumers realise it themselves – all while building trust and demonstrating values. By focusing on user-centric innovation, ethical and sustainable practices, interoperability, and service-

oriented business models, a company can navigate the evolving landscape successfully. The future of consumer tech is brimming with opportunity, but also competition and scrutiny – a strategic, thoughtful approach as outlined above will help turn the trends and insights from this report into concrete business success.

Sources

- BBVA Switzerland – “*What will smartphones be like in 2030?*” (Oct 2023). Discusses smartphone future trends like foldable designs, AR glasses, AI assistants, neurochips, 6G integration, and sustainability efforts bbva.ch bbva.ch.
- Lucintel – “*Smartphone Market Report: Trends, Forecast and Competitive Analysis to 2030.*” (Oct 2025). Provides data on smartphone market size (\$858 billion by 2030) and growth drivers such as 5G, emerging markets, innovation in features, as well as trends like foldable displays, AI integration, and sustainability initiatives in smartphones lucintel.com lucintel.com.
- Mintel – “*The Rise of Smart Home Technology: Opportunities for the Future of Living.*” (2023). Offers consumer survey insights on smart home adoption: key drivers (security 51%, convenience), barriers (privacy concerns, complexity, cost), and the impact of standards like Matter and AI in smart home devices mintel.com mintel.com.
- SecurityWorldMarket (Grand View Research) – “*Global smart home market predicted to hit \$537 billion by 2030.*” (Apr 2025). Reports rapid smart home market growth at 27% CAGR (2025–2030) reaching \$537 billion by 2030, driven by IoT penetration, convenience/comfort demands, and AI integration. Notes security devices as the largest segment and Asia-Pacific as fastest-growing region securityworldmarket.com securityworldmarket.com.
- Grand View Research – “*Wearable Technology Market Size, Share & Trends Analysis Report, 2025–2030.*” (2024). Estimates the global wearable tech market at \$84.2 billion in 2024, projected to reach \$186.1 billion by 2030 (13.6% CAGR). Details that North America holds 34% share, wrist-wear (smartwatches/fitness bands) is 58% of revenue, and growth is propelled by health monitoring demand and sports/fitness adoption grandviewresearch.com grandviewresearch.com.
- ACS Axial – “*Wearable Technology: Trends, Innovations, and Future Directions.*” (Jul 2024). Summarises emerging wearable tech R&D: flexible and transient electronics, e-textiles (electronic tattoos), smart contact lenses, implantables, and advanced sensors (glucose, sweat) for health. Highlights prediction that wearable market could reach at least \$142 billion by 2030 and that consumers demand thinner, more comfortable form factors axial.acs.org axial.acs.org.

- Menlo Ventures – “*2025: The State of Consumer AI.*” (Jun 2025). Survey-based report on consumer AI adoption: 61% of American adults used AI in past 6 months, ~19% use it daily, equating to ~1.8 billion global users and ~600 million daily users. Notes only ~3% pay for AI services, indicating a large monetisation gap. Also provides demographic insights (millennials highest daily use, 79% of parents have used AI) and use-case stats menlovc.com menlovc.com.
- Deloitte Insights – “*2025 Connected Consumer: Innovation with trust.*” (Aug 2025). Presents findings that 53% of US consumers now use or experiment with generative AI (up from 38% a year prior), and 42% of regular gen-AI users say it has very positive impact on their lives. Emphasises consumers’ desire for responsible innovation: growing concerns that tech advances too fast without safeguards, with 70% worried about data privacy/security (up from 60%). Consumers want transparency, control, and data security from tech providers deloitte.com deloitte.com.
- Ericsson ConsumerLab – “*10 Hot Consumer Trends 2030: Connected Intelligent Machines.*” (2023). Explores futuristic consumer expectations for 2030, e.g., 76% expect posture-supporting “body bots,” 75% anticipate AI “guardian angels” for privacy protection that minimize digital footprints, 46% of virtual assistant users believe AI devices will need to legally explain their actions by 2030, and 83% foresee seamless connectivity guides (“connectivity gofers”) to maintain optimal network coverage ericsson.com ericsson.com.
- Grand View Research – “*Generative AI Market Report, 2025–2030.*” (2024). States the global generative AI market was \$16.87 billion in 2024 and is projected to reach \$109.37 billion by 2030 (37.6% CAGR). Attributes growth to expanding use of AI content generation (text-to-image/video, etc.) across industries and notes North America held ~40% of the market in 2024 grandviewresearch.com grandviewresearch.com.